Analysis of stable 1,2-dichlorobenzene-degrading enrichments and two newly isolated degrading strains, Acidovorax sp. sk40 and Ralstonia sp. sk41

Analysis of stable 1,2-dichlorobenzene-degrading enrichments and two newly isolated degrading... Stable degrading 1,2-dichlorobenzene (1,2-DCB) enrichments were generated from original contaminated soil and groundwater via enrichment procedures using a mineral salt medium containing 1,2-DCB as the sole carbon and energy source. Four transferred enrichments showed stable 1,2-DCB-degrading ability and completely degraded 1,2-DCB within 32 h. PCR-denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library analyses indicated that two bacterial strains, belonging to Acidovorax spp. and Ralstonia spp., respectively, were the predominant organisms in each enrichment. Moreover, these strains maintained a stable coexistence in the four transferred enrichments. These two bacteria were subsequently identified as Acidovorax sp. strain sk40 and Ralstonia sp. strain sk41. Strain sk40 was more tolerant to higher concentrations of 1,2-DCB than strain sk41, while strain sk41 maintained a shorter degradation time under lower concentrations of 1,2-DCB. Notably, however, both strains exhibited similar growth rates and degradation rates in media containing 40 mg/l 1,2-DCB, as well as complete degradation of the 1,2-DCB (40 mg/l) within 32 h. It is expected that these two strains will be used in future applications of bioremediation of 1,2-DCB contamination. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

Analysis of stable 1,2-dichlorobenzene-degrading enrichments and two newly isolated degrading strains, Acidovorax sp. sk40 and Ralstonia sp. sk41

Loading next page...
 
/lp/springer_journal/analysis-of-stable-1-2-dichlorobenzene-degrading-enrichments-and-two-bqjwSW40cQ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
D.O.I.
10.1007/s00253-017-8406-2
Publisher site
See Article on Publisher Site

Abstract

Stable degrading 1,2-dichlorobenzene (1,2-DCB) enrichments were generated from original contaminated soil and groundwater via enrichment procedures using a mineral salt medium containing 1,2-DCB as the sole carbon and energy source. Four transferred enrichments showed stable 1,2-DCB-degrading ability and completely degraded 1,2-DCB within 32 h. PCR-denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library analyses indicated that two bacterial strains, belonging to Acidovorax spp. and Ralstonia spp., respectively, were the predominant organisms in each enrichment. Moreover, these strains maintained a stable coexistence in the four transferred enrichments. These two bacteria were subsequently identified as Acidovorax sp. strain sk40 and Ralstonia sp. strain sk41. Strain sk40 was more tolerant to higher concentrations of 1,2-DCB than strain sk41, while strain sk41 maintained a shorter degradation time under lower concentrations of 1,2-DCB. Notably, however, both strains exhibited similar growth rates and degradation rates in media containing 40 mg/l 1,2-DCB, as well as complete degradation of the 1,2-DCB (40 mg/l) within 32 h. It is expected that these two strains will be used in future applications of bioremediation of 1,2-DCB contamination.

Journal

Applied Microbiology and BiotechnologySpringer Journals

Published: Jul 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off