Analysis of quantitative trait loci using hybrid pedigrees: Quantitative traits of animals

Analysis of quantitative trait loci using hybrid pedigrees: Quantitative traits of animals A method is proposed for analysis of quantitative traits in animal hybrid pedigrees formed by crosses between outbred lines differing in allele frequencies of the genes controlling the trait studied. The method is based on the decomposition of trait variances into components and uses maximization of the likelihood function for estimating model parameters, which allows the estimation of additive and dominance effects of the gene involved in trait determination and its allele frequencies, as well as determination of the chromosomal position of this gene relative to genotyped markers. To test the linkage of this gene with markers, a statistic with the noncentral x 2 distribution has been chosen. Analytical expressions for the power of this method have been derived. The method has been tested on small model hybrid pedigrees. Phenotypic values of the trait and information on marker genotypes for each individual in hybrid pedigrees are initial data for the analysis of a quantitative trait. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Analysis of quantitative trait loci using hybrid pedigrees: Quantitative traits of animals

Loading next page...
 
/lp/springer_journal/analysis-of-quantitative-trait-loci-using-hybrid-pedigrees-JrCSaEtS04
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795407020160
Publisher site
See Article on Publisher Site

Abstract

A method is proposed for analysis of quantitative traits in animal hybrid pedigrees formed by crosses between outbred lines differing in allele frequencies of the genes controlling the trait studied. The method is based on the decomposition of trait variances into components and uses maximization of the likelihood function for estimating model parameters, which allows the estimation of additive and dominance effects of the gene involved in trait determination and its allele frequencies, as well as determination of the chromosomal position of this gene relative to genotyped markers. To test the linkage of this gene with markers, a statistic with the noncentral x 2 distribution has been chosen. Analytical expressions for the power of this method have been derived. The method has been tested on small model hybrid pedigrees. Phenotypic values of the trait and information on marker genotypes for each individual in hybrid pedigrees are initial data for the analysis of a quantitative trait.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Feb 24, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off