Analysis of mutations in the mat1 region of Schizosaccharomyces pombe strain with the deletion of gene rhp55 +

Analysis of mutations in the mat1 region of Schizosaccharomyces pombe strain with the deletion of... DNA double-strand breaks may occur both under the action of various exogenous factors and in the course of cell metabolism processes, in particular, upon mating type switching in yeast. Genes belonging to the epistatic group RAD52 are known to repiar such DNA damage. Molecular defects in mating type switching occurring after the deletion of gene rhp55 + encoding the paralog of recombinational protein Rhp51, which is a functional homolog of Escherichia coli RecA, were studied in fission yeast. Analysis of stable nonswitching segregants in h 90 rhp55 mutants with unchanged configuration of the mating type switching locus but with a drastically decreased level of double-strand DNA break formation at the mat1:1 locus demonstrated changes in DNA sequences within the region responsible for the generation of the breaks. These changes might have resulted from incorrect gene conversion upon repair of double-strand DNA breaks in Schizosaccharomyces pombe rhp55 mutants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Analysis of mutations in the mat1 region of Schizosaccharomyces pombe strain with the deletion of gene rhp55 +

Loading next page...
 
/lp/springer_journal/analysis-of-mutations-in-the-mat1-region-of-schizosaccharomyces-pombe-1vX60SQpU3
Publisher
Springer Journals
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795406050048
Publisher site
See Article on Publisher Site

Abstract

DNA double-strand breaks may occur both under the action of various exogenous factors and in the course of cell metabolism processes, in particular, upon mating type switching in yeast. Genes belonging to the epistatic group RAD52 are known to repiar such DNA damage. Molecular defects in mating type switching occurring after the deletion of gene rhp55 + encoding the paralog of recombinational protein Rhp51, which is a functional homolog of Escherichia coli RecA, were studied in fission yeast. Analysis of stable nonswitching segregants in h 90 rhp55 mutants with unchanged configuration of the mating type switching locus but with a drastically decreased level of double-strand DNA break formation at the mat1:1 locus demonstrated changes in DNA sequences within the region responsible for the generation of the breaks. These changes might have resulted from incorrect gene conversion upon repair of double-strand DNA breaks in Schizosaccharomyces pombe rhp55 mutants.

Journal

Russian Journal of GeneticsSpringer Journals

Published: May 15, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off