Analysis of mutation rates in the SMCY/SMCX genes shows that mammalian evolution is male driven

Analysis of mutation rates in the SMCY/SMCX genes shows that mammalian evolution is male driven Mammalian evolution is believed to be male driven because the greater number of germ cell divisions per generation in males increases the opportunity for errors in DNA replication. Since the Y Chromosome (Chr) replicates exclusively in males, its genes should also evolve faster than X or autosomal genes. In addition, estimating the overall male-to-female mutation ratio (αm) is of great importance as a large αm implies that replication-independent mutagenic events play a relatively small role in evolution. A small αm suggests that the impact of these factors may, in fact, be significant. In order to address this problem, we have analyzed the rates of evolution in the homologous X-Y common SMCX/SMCY genes from three different species—mouse, human, and horse. The SMC genes were chosen because the X and Y copies are highly homologous, well conserved in evolution, and in all probability functionally interchangeable. Sequence comparisons and analysis of synonymous substitutions in approximately 1kb of the 5′ coding region of the SMC genes reveal that the Y-linked copies are evolving approximately 1.8 times faster than their X homologs. The male-to-female mutation ratio αm was estimated to be 3. These data support the hypothesis that mammalian evolution is male driven. However, the ratio value is far smaller than suggested in earlier works, implying significance of replication-independent mutagenic events in evolution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Analysis of mutation rates in the SMCY/SMCX genes shows that mammalian evolution is male driven

Loading next page...
 
/lp/springer_journal/analysis-of-mutation-rates-in-the-smcy-smcx-genes-shows-that-mammalian-Fqgx1zBOYi
Publisher
Springer-Verlag
Copyright
Copyright © 1997 by Springer-Verlag
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359900372
Publisher site
See Article on Publisher Site

Abstract

Mammalian evolution is believed to be male driven because the greater number of germ cell divisions per generation in males increases the opportunity for errors in DNA replication. Since the Y Chromosome (Chr) replicates exclusively in males, its genes should also evolve faster than X or autosomal genes. In addition, estimating the overall male-to-female mutation ratio (αm) is of great importance as a large αm implies that replication-independent mutagenic events play a relatively small role in evolution. A small αm suggests that the impact of these factors may, in fact, be significant. In order to address this problem, we have analyzed the rates of evolution in the homologous X-Y common SMCX/SMCY genes from three different species—mouse, human, and horse. The SMC genes were chosen because the X and Y copies are highly homologous, well conserved in evolution, and in all probability functionally interchangeable. Sequence comparisons and analysis of synonymous substitutions in approximately 1kb of the 5′ coding region of the SMC genes reveal that the Y-linked copies are evolving approximately 1.8 times faster than their X homologs. The male-to-female mutation ratio αm was estimated to be 3. These data support the hypothesis that mammalian evolution is male driven. However, the ratio value is far smaller than suggested in earlier works, implying significance of replication-independent mutagenic events in evolution.

Journal

Mammalian GenomeSpringer Journals

Published: Mar 24, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off