Analysis of microstructure replication using vibratory assisted thermal imprint process

Analysis of microstructure replication using vibratory assisted thermal imprint process In this article, thermal imprint process for replication of high-quality microstructures on the surface of polymer is investigated. Vibrations has been previously employed as an additional measure to enhance the replicability of microstructure into the pre-heated polymer. On the other hand, polymer behavior under the action of vibrations is not sufficiently studied. In this article, thermal microstructure replication is modeled and simulated by applying vibratory assisted thermal imprint to provide a better comprehension of the replication process peculiarities that would lead to improvement of the replication process itself. Different aspects of the process are analyzed: depth of imprinted pattern, pressure, traction force, residual field of plastic deformations and stresses. Numerical simulation results are verified experimentally. The results of the research shows that process assistance with vibratory excitation results in higher imprint depth compared with the specimens, imprinted under the identical process conditions without vibratory excitation. 1 Introduction emboss the microstructure. Finally, the master microstructure with the polymer are quenched and Precise microstructures are often applied in sensor, laser demolded (Giboz et al. 2007). The main shortcomings of and optic technologies. Therefore, novel and efficient the process are possible damages to the replicated microstructure manufacturing technologies must be devel- microstructure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microsystem Technologies Springer Journals

Analysis of microstructure replication using vibratory assisted thermal imprint process

Loading next page...
 
/lp/springer_journal/analysis-of-microstructure-replication-using-vibratory-assisted-sHLszpRKOk
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Electronics and Microelectronics, Instrumentation; Nanotechnology; Mechanical Engineering
ISSN
0946-7076
eISSN
1432-1858
D.O.I.
10.1007/s00542-018-3976-1
Publisher site
See Article on Publisher Site

Abstract

In this article, thermal imprint process for replication of high-quality microstructures on the surface of polymer is investigated. Vibrations has been previously employed as an additional measure to enhance the replicability of microstructure into the pre-heated polymer. On the other hand, polymer behavior under the action of vibrations is not sufficiently studied. In this article, thermal microstructure replication is modeled and simulated by applying vibratory assisted thermal imprint to provide a better comprehension of the replication process peculiarities that would lead to improvement of the replication process itself. Different aspects of the process are analyzed: depth of imprinted pattern, pressure, traction force, residual field of plastic deformations and stresses. Numerical simulation results are verified experimentally. The results of the research shows that process assistance with vibratory excitation results in higher imprint depth compared with the specimens, imprinted under the identical process conditions without vibratory excitation. 1 Introduction emboss the microstructure. Finally, the master microstructure with the polymer are quenched and Precise microstructures are often applied in sensor, laser demolded (Giboz et al. 2007). The main shortcomings of and optic technologies. Therefore, novel and efficient the process are possible damages to the replicated microstructure manufacturing technologies must be devel- microstructure.

Journal

Microsystem TechnologiesSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off