Analysis of intraspecific diversity of cultivated emmer Triticum dicoccum (Schrank.) schuebl using C-banding technique

Analysis of intraspecific diversity of cultivated emmer Triticum dicoccum (Schrank.) schuebl... Ninety-four lines of Triticum dicoccum isolated from 86 wheat accessions from Vavilov All-Russia Research Institute of Plant Industry (VIR, Russia) and INRA (Clermont-Ferrand, France) germ-plasm collections were studied using C-banding technique. Visual comparison of karyotypes of different accessions was performed to establish genetic relationships and evaluate features inherent for ecological-geographical groups. The level of C-banding polymorphism in the whole sample of tetraploid emmer proved to be relatively low. The diversity within groups was higher than the differences between them. The material studied contained 39 lines carrying 16 different types of chromosomal rearrangements including single and multiple translocations and inversions. The level of translocation polymorphism was comparable with that detected earlier for polyploid wheat species. The frequencies of individual translocation types varied from 18 (T7A:5B) to 1 (nine types). Analysis of the distribution of the most frequent translocations 7A:5B suggested that it has significant adaptive value on the territory of Europe. Similarity of the C-banding patterns of European emmer and the accessions with the same translocation of the Asian origin points to their possible common origin. The occurrence of the same translocation in several T. dicoccoides accessions from Syria and Lebanon may indicate that such forms of wild emmer could have taken part in the origin of cultivate emmer from Western Europe. Similarity of the C-banding patterns of some chromosomes of European emmer and spelt could serve as an indirect evidence of their close genetic relationships. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Analysis of intraspecific diversity of cultivated emmer Triticum dicoccum (Schrank.) schuebl using C-banding technique

Loading next page...
 
/lp/springer_journal/analysis-of-intraspecific-diversity-of-cultivated-emmer-triticum-U1SHvv5ezS
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795407110105
Publisher site
See Article on Publisher Site

Abstract

Ninety-four lines of Triticum dicoccum isolated from 86 wheat accessions from Vavilov All-Russia Research Institute of Plant Industry (VIR, Russia) and INRA (Clermont-Ferrand, France) germ-plasm collections were studied using C-banding technique. Visual comparison of karyotypes of different accessions was performed to establish genetic relationships and evaluate features inherent for ecological-geographical groups. The level of C-banding polymorphism in the whole sample of tetraploid emmer proved to be relatively low. The diversity within groups was higher than the differences between them. The material studied contained 39 lines carrying 16 different types of chromosomal rearrangements including single and multiple translocations and inversions. The level of translocation polymorphism was comparable with that detected earlier for polyploid wheat species. The frequencies of individual translocation types varied from 18 (T7A:5B) to 1 (nine types). Analysis of the distribution of the most frequent translocations 7A:5B suggested that it has significant adaptive value on the territory of Europe. Similarity of the C-banding patterns of European emmer and the accessions with the same translocation of the Asian origin points to their possible common origin. The occurrence of the same translocation in several T. dicoccoides accessions from Syria and Lebanon may indicate that such forms of wild emmer could have taken part in the origin of cultivate emmer from Western Europe. Similarity of the C-banding patterns of some chromosomes of European emmer and spelt could serve as an indirect evidence of their close genetic relationships.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Nov 15, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off