Analysis of imprinting in mice with uniparental duplication of proximal chromosomes 7 and 15 by use of a custom oligonucleotide microarray

Analysis of imprinting in mice with uniparental duplication of proximal chromosomes 7 and 15 by... We have developed an imprinting assay combining the use of mice carrying maternal or paternal duplication of chromosomal regions of interest with custom oligonucleotide microarrays. As a model system, we analyzed RNA from CNS tissue of neonatal mice carrying the reciprocal translocation T(7;15)9H and uniparental duplication of proximal Chr 7 and 15. The duplicated region includes the locus on proximal Chr 7 corresponding to the human Prader-Willi/Angelman Syndrome. The microarray contained 322 oligonucleotides, including probes to detect major genes involved in neural excitability and synaptic transmission, as well as known imprinted genes mapping to proximal Chr 7: Ndn, Snrpn, Mkrn3, Magel2, Peg3, and Ube3a. Imprinting of these genes in neonatal cortex and cerebellum was first confirmed by quantitative RT-PCR. Their inclusion on the microarray thus provided positive controls for evaluating the effect of background on the sensitivity of the assay, and for establishing the minimum level of expression required to detect imprinting. Our analysis extended previous work by revealing bi-allelic expression in CNS tissue of those queried genes mapping to proximal Chr 7 or 15, including the Gabrb3 gene, for which there have been conflicting reports. Microarray analysis also revealed no effect of the maternal or paternal disomy on expression levels of the unlinked genes detected, including those potentially implicated in the Prader-Willi or Angelman Syndrome. In addition, quantitative RT-PCR revealed a gene dosage effect in both cerebellum and cortex for all of the known imprinted genes assayed, except for Ube3a in cerebellum. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Analysis of imprinting in mice with uniparental duplication of proximal chromosomes 7 and 15 by use of a custom oligonucleotide microarray

Loading next page...
 
/lp/springer_journal/analysis-of-imprinting-in-mice-with-uniparental-duplication-of-N0gXLc3BVu
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-003-2322-8
Publisher site
See Article on Publisher Site

Abstract

We have developed an imprinting assay combining the use of mice carrying maternal or paternal duplication of chromosomal regions of interest with custom oligonucleotide microarrays. As a model system, we analyzed RNA from CNS tissue of neonatal mice carrying the reciprocal translocation T(7;15)9H and uniparental duplication of proximal Chr 7 and 15. The duplicated region includes the locus on proximal Chr 7 corresponding to the human Prader-Willi/Angelman Syndrome. The microarray contained 322 oligonucleotides, including probes to detect major genes involved in neural excitability and synaptic transmission, as well as known imprinted genes mapping to proximal Chr 7: Ndn, Snrpn, Mkrn3, Magel2, Peg3, and Ube3a. Imprinting of these genes in neonatal cortex and cerebellum was first confirmed by quantitative RT-PCR. Their inclusion on the microarray thus provided positive controls for evaluating the effect of background on the sensitivity of the assay, and for establishing the minimum level of expression required to detect imprinting. Our analysis extended previous work by revealing bi-allelic expression in CNS tissue of those queried genes mapping to proximal Chr 7 or 15, including the Gabrb3 gene, for which there have been conflicting reports. Microarray analysis also revealed no effect of the maternal or paternal disomy on expression levels of the unlinked genes detected, including those potentially implicated in the Prader-Willi or Angelman Syndrome. In addition, quantitative RT-PCR revealed a gene dosage effect in both cerebellum and cortex for all of the known imprinted genes assayed, except for Ube3a in cerebellum.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off