Analysis of Heterozygosity at the PI, TF, PGM1, ACP1, HP, GC, GLO1, C3, and ESDLoci in Pulmonary Tuberculosis Patients Differing in Response to Treatment

Analysis of Heterozygosity at the PI, TF, PGM1, ACP1, HP, GC, GLO1, C3, and ESDLoci in Pulmonary... Heterozygosity at nine genetic loci (PI, TF, PGM1, ACP1, HP, GC, GLO1, C3, and ESD) was analyzed in pulmonary tuberculosis patients with good (group 1, N= 71) and poor (group 2, N= 35) response to treatment. The observed heterozygosities were compared with the expected values, which were calculated from allele frequencies in a control sample of healthy individuals (N= 328 with all but one locus and 78 with ESD) according to Hardy–Weinberg expectations. The analysis showed that the observed heterozygosities g l of patients significantly differed from the expected values h lin the case of four loci (GC, PI, C3, and ACP1). The observed heterozygosity was higher than expected in three cases (PI, C3, and ACP1) and lower then expected (GC) in one case. When data on each individual locus were compared using Fisher's exact test, both groups of patients proved to significantly differ (P F< 0.05) from the control group in the same four loci. No difference in observed heterozygosity was detected between the two groups of patients. The mean expected heterozygosity was h¯= 0.386 ± 0.00674; the mean observed heterozygosity was g¯ = 0.415 ± 0.02 in group 1, g¯ = 0.402 ± 0.026 in group 2, and g¯ = 0.371 ± 0.00955 in the control group. The ttest did not reveal a significant difference between the mean values of expected observed heterozygosities. Heterozygosity at individual loci, rather than mean heterozygosity, was proposed as an integral nonspecific indicator of the genetic control of a disease, because the former directly implicates individual marker loci in the development of a disorder, whereas effects of individual loci may eliminate each other when mean heterozygosity is computed. Based on the results obtained, a genetic control was assumed for the development of the tuberculosis process in the lungs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Analysis of Heterozygosity at the PI, TF, PGM1, ACP1, HP, GC, GLO1, C3, and ESDLoci in Pulmonary Tuberculosis Patients Differing in Response to Treatment

Loading next page...
 
/lp/springer_journal/analysis-of-heterozygosity-at-the-pi-tf-pgm1-acp1-hp-gc-glo1-c3-and-9eEsqILgLt
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/A:1013252130568
Publisher site
See Article on Publisher Site

Abstract

Heterozygosity at nine genetic loci (PI, TF, PGM1, ACP1, HP, GC, GLO1, C3, and ESD) was analyzed in pulmonary tuberculosis patients with good (group 1, N= 71) and poor (group 2, N= 35) response to treatment. The observed heterozygosities were compared with the expected values, which were calculated from allele frequencies in a control sample of healthy individuals (N= 328 with all but one locus and 78 with ESD) according to Hardy–Weinberg expectations. The analysis showed that the observed heterozygosities g l of patients significantly differed from the expected values h lin the case of four loci (GC, PI, C3, and ACP1). The observed heterozygosity was higher than expected in three cases (PI, C3, and ACP1) and lower then expected (GC) in one case. When data on each individual locus were compared using Fisher's exact test, both groups of patients proved to significantly differ (P F< 0.05) from the control group in the same four loci. No difference in observed heterozygosity was detected between the two groups of patients. The mean expected heterozygosity was h¯= 0.386 ± 0.00674; the mean observed heterozygosity was g¯ = 0.415 ± 0.02 in group 1, g¯ = 0.402 ± 0.026 in group 2, and g¯ = 0.371 ± 0.00955 in the control group. The ttest did not reveal a significant difference between the mean values of expected observed heterozygosities. Heterozygosity at individual loci, rather than mean heterozygosity, was proposed as an integral nonspecific indicator of the genetic control of a disease, because the former directly implicates individual marker loci in the development of a disorder, whereas effects of individual loci may eliminate each other when mean heterozygosity is computed. Based on the results obtained, a genetic control was assumed for the development of the tuberculosis process in the lungs.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off