Analysis of gene expression in the wound repair/regeneration process

Analysis of gene expression in the wound repair/regeneration process Wound repair/regeneration is a complex process consisting of three stages: inflammation, tissue regrowth, and remodeling, which together involve the action of hundreds of genes. In order to i) identify and analyze the genes that are expressed at the inflammatory stage of repair (i.e., 24 h after injury) and ii) evaluate the molecular basis of fast-wound repair/regeneration in adult mammals, we examined the expression of 8734 sequence-verified genes in response to ear punch in a fast wound-repair/regeneration strain, MRL/MpJ-Faslpr mice, and a slow-wound-repair strain, C57BL/6J mice. Many differentially expressed genes can be assigned to wound-repairing pathways known to be active during the inflammatory phase, whereas others are involved in pathways not previously associated with wound repair. Many genes of unknown function (ESTs) exhibited a more than twofold increase in MRL/MpJ-Faslpr or C57BL/6J mice, suggesting that current understanding of the molecular events at the inflammatory stage of repair is still limited. A comparison of the differential expression profiles between MRL/MpJ-Faslpr and C57BL/6J mice suggests that fast-wound-repair in MRL/MpJ-Faslpr mice is mediated by a metabolic shift toward a low inflammatory response and an enhanced tissue repair. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Analysis of gene expression in the wound repair/regeneration process

Loading next page...
 
/lp/springer_journal/analysis-of-gene-expression-in-the-wound-repair-regeneration-process-40qlIcD2uT
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010230
Publisher site
See Article on Publisher Site

Abstract

Wound repair/regeneration is a complex process consisting of three stages: inflammation, tissue regrowth, and remodeling, which together involve the action of hundreds of genes. In order to i) identify and analyze the genes that are expressed at the inflammatory stage of repair (i.e., 24 h after injury) and ii) evaluate the molecular basis of fast-wound repair/regeneration in adult mammals, we examined the expression of 8734 sequence-verified genes in response to ear punch in a fast wound-repair/regeneration strain, MRL/MpJ-Faslpr mice, and a slow-wound-repair strain, C57BL/6J mice. Many differentially expressed genes can be assigned to wound-repairing pathways known to be active during the inflammatory phase, whereas others are involved in pathways not previously associated with wound repair. Many genes of unknown function (ESTs) exhibited a more than twofold increase in MRL/MpJ-Faslpr or C57BL/6J mice, suggesting that current understanding of the molecular events at the inflammatory stage of repair is still limited. A comparison of the differential expression profiles between MRL/MpJ-Faslpr and C57BL/6J mice suggests that fast-wound-repair in MRL/MpJ-Faslpr mice is mediated by a metabolic shift toward a low inflammatory response and an enhanced tissue repair.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off