Analysis of factors decreasing testis weight in MRL mice

Analysis of factors decreasing testis weight in MRL mice MRL/MpJ (MRL) mouse testes have several unique characteristics, including the appearance of oocytes, the occurrence of metaphase-specific apoptosis of meiotic spermatocytes, and the presence of heat-shock-resistant spermatocytes. In the present study we used chromosomal mapping to determine the genomic background associated with small testis size in MRL mice. We prepared and analyzed C57BL/6-based congenic mice carrying MRL mouse loci. Quantitative trait loci (QTL) analysis revealed susceptibility loci for small testis size at 100 cM on chromosome (Chr) 1 and at around 80 cM on Chr 2. Analysis with B6.MRLc1 and B6.MRLc2 congenic mice and double-congenic mice confirmed the QTL data and showed that low testis weight in MRL mice was caused by germ cell apoptosis. Through histological examinations we found that B6.MRLc1 and B6.MRLc2 mice showed stage-specific apoptosis in their testes, the former at metaphase stage XII and the later at pachytene stage IV. Metaphase-specific apoptosis of spermatocytes occurs due to mutation of the exonuclease 1 (Exo1) gene located at 100 cM on Chr 1. Thus, the mutation of the Exo1 gene is also responsible for low testis weight caused by metaphase-specific apoptosis. In conclusion, testis weight is reduced in MRL mice due to apoptosis of germ cells caused by mutations in loci on Chrs 1 and 2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Analysis of factors decreasing testis weight in MRL mice

Loading next page...
 
/lp/springer_journal/analysis-of-factors-decreasing-testis-weight-in-mrl-mice-0dl0U90hay
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-010-9251-0
Publisher site
See Article on Publisher Site

Abstract

MRL/MpJ (MRL) mouse testes have several unique characteristics, including the appearance of oocytes, the occurrence of metaphase-specific apoptosis of meiotic spermatocytes, and the presence of heat-shock-resistant spermatocytes. In the present study we used chromosomal mapping to determine the genomic background associated with small testis size in MRL mice. We prepared and analyzed C57BL/6-based congenic mice carrying MRL mouse loci. Quantitative trait loci (QTL) analysis revealed susceptibility loci for small testis size at 100 cM on chromosome (Chr) 1 and at around 80 cM on Chr 2. Analysis with B6.MRLc1 and B6.MRLc2 congenic mice and double-congenic mice confirmed the QTL data and showed that low testis weight in MRL mice was caused by germ cell apoptosis. Through histological examinations we found that B6.MRLc1 and B6.MRLc2 mice showed stage-specific apoptosis in their testes, the former at metaphase stage XII and the later at pachytene stage IV. Metaphase-specific apoptosis of spermatocytes occurs due to mutation of the exonuclease 1 (Exo1) gene located at 100 cM on Chr 1. Thus, the mutation of the Exo1 gene is also responsible for low testis weight caused by metaphase-specific apoptosis. In conclusion, testis weight is reduced in MRL mice due to apoptosis of germ cells caused by mutations in loci on Chrs 1 and 2.

Journal

Mammalian GenomeSpringer Journals

Published: Feb 16, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off