Analysis of EEG signals and its application to neuromarketing

Analysis of EEG signals and its application to neuromarketing Marketing and promotions of various consumer products through advertisement campaign is a well known practice to increase the sales and awareness amongst the consumers. This essentially leads to increase in profit to a manufacturing unit. Re-production of products usually depends on the various facts including consumption in the market, reviewer’s comments, ratings, etc. However, knowing consumer preference for decision making and behavior prediction for effective utilization of a product using unconscious processes is called “Neuromarketing”. This field is emerging fast due to its inherent potential. Therefore, research work in this direction is highly demanded, yet not reached a satisfactory level. In this paper, we propose a predictive modeling framework to understand consumer choice towards E-commerce products in terms of “likes” and “dislikes” by analyzing EEG signals. The EEG signals of volunteers with varying age and gender were recorded while they browsed through various consumer products. The experiments were performed on the dataset comprised of various consumer products. The accuracy of choice prediction was recorded using a user-independent testing approach with the help of Hidden Markov Model (HMM) classifier. We have observed that the prediction results are promising and the framework can be used for better business model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Analysis of EEG signals and its application to neuromarketing

Loading next page...
 
/lp/springer_journal/analysis-of-eeg-signals-and-its-application-to-neuromarketing-nYOvs80ejZ
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4580-6
Publisher site
See Article on Publisher Site

Abstract

Marketing and promotions of various consumer products through advertisement campaign is a well known practice to increase the sales and awareness amongst the consumers. This essentially leads to increase in profit to a manufacturing unit. Re-production of products usually depends on the various facts including consumption in the market, reviewer’s comments, ratings, etc. However, knowing consumer preference for decision making and behavior prediction for effective utilization of a product using unconscious processes is called “Neuromarketing”. This field is emerging fast due to its inherent potential. Therefore, research work in this direction is highly demanded, yet not reached a satisfactory level. In this paper, we propose a predictive modeling framework to understand consumer choice towards E-commerce products in terms of “likes” and “dislikes” by analyzing EEG signals. The EEG signals of volunteers with varying age and gender were recorded while they browsed through various consumer products. The experiments were performed on the dataset comprised of various consumer products. The accuracy of choice prediction was recorded using a user-independent testing approach with the help of Hidden Markov Model (HMM) classifier. We have observed that the prediction results are promising and the framework can be used for better business model.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Mar 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off