Analysis of Different Methodological Approaches to Measuring Microtubule Length in the Cytoplasm of Cultured Cells

Analysis of Different Methodological Approaches to Measuring Microtubule Length in the Cytoplasm... It is generally assumed that microtubules in tissue culture cells extend from the centrosome to cell periphery, and the length of individual microtubules averages several dozens of microns. However, direct electron-microscopic measurements have cast some doubt on this assumption. In this study, the average length of microtubules in cultured Vero cells was estimated using a combined approach. The length of free cytoplasmic and centrosomal microtubules was determined by means of electron microscopy in serial sections; concurrently, the length of free microtubules in the lamella was measured in preparations stained with tubulin antibodies (an indirect immunofluorescent method), by tracing saltatory particle movements along the microtubules in living cells. According to the data of immunofluorescent microscopy, microtubule length in the lamella averaged 4.57 ± 3.69 μm. However, since two or more microtubules can overlap, their length may be slightly overestimated by this method. On the other hand, saltatory movements are easy to monitor and measure fairly accurately, but their range may be shorter than the actual microtubule length because of a limited processiveness of motors (kinesin and dynein). On average, the trajectories of saltatory movements in living cells were 3.85 ± 0.72 μm long. At the electron-microscopic level, microtubule length was analyzed using pseudo-three-dimensional reconstructions of the microtubule systems around the centrosome and in the lamella. The length of free microtubules in the lamella reached 18 μm, averaging 3.33 ± 2.43 μm; the average length of centrosomal microtubules was 1.49 ± 0.82 μm. Good correspondence between the data on microtubule length and arrangement obtained by different methods allows the conclusion that most of the free microtubules in Vero cells actually have a length of 2–5 μm; i.e., they are much shorter than the cell radius (about 25 μm). Microtubules extending from the centrosome are shorter still and do not reach the cell periphery. Thus, most microtubules in the lamella of Vero cells are free and their ordered arrangement is not associated with their attachment to the centrosome. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Analysis of Different Methodological Approaches to Measuring Microtubule Length in the Cytoplasm of Cultured Cells

Loading next page...
 
/lp/springer_journal/analysis-of-different-methodological-approaches-to-measuring-eXL4SQhdNb
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1023/A:1009413211185
Publisher site
See Article on Publisher Site

Abstract

It is generally assumed that microtubules in tissue culture cells extend from the centrosome to cell periphery, and the length of individual microtubules averages several dozens of microns. However, direct electron-microscopic measurements have cast some doubt on this assumption. In this study, the average length of microtubules in cultured Vero cells was estimated using a combined approach. The length of free cytoplasmic and centrosomal microtubules was determined by means of electron microscopy in serial sections; concurrently, the length of free microtubules in the lamella was measured in preparations stained with tubulin antibodies (an indirect immunofluorescent method), by tracing saltatory particle movements along the microtubules in living cells. According to the data of immunofluorescent microscopy, microtubule length in the lamella averaged 4.57 ± 3.69 μm. However, since two or more microtubules can overlap, their length may be slightly overestimated by this method. On the other hand, saltatory movements are easy to monitor and measure fairly accurately, but their range may be shorter than the actual microtubule length because of a limited processiveness of motors (kinesin and dynein). On average, the trajectories of saltatory movements in living cells were 3.85 ± 0.72 μm long. At the electron-microscopic level, microtubule length was analyzed using pseudo-three-dimensional reconstructions of the microtubule systems around the centrosome and in the lamella. The length of free microtubules in the lamella reached 18 μm, averaging 3.33 ± 2.43 μm; the average length of centrosomal microtubules was 1.49 ± 0.82 μm. Good correspondence between the data on microtubule length and arrangement obtained by different methods allows the conclusion that most of the free microtubules in Vero cells actually have a length of 2–5 μm; i.e., they are much shorter than the cell radius (about 25 μm). Microtubules extending from the centrosome are shorter still and do not reach the cell periphery. Thus, most microtubules in the lamella of Vero cells are free and their ordered arrangement is not associated with their attachment to the centrosome.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Oct 9, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off