Analysis of climate trend and effect of land use land cover change on Harangi streamflow, South India: a case study

Analysis of climate trend and effect of land use land cover change on Harangi streamflow, South... Land use land cover (LULC) and climate change are considered to be driving factors contributing to the alteration of the hydrological regime. Therefore, an attempt has been made to study climate trend and the effect of LULC on streamflow in a basin covered predominantly by forest. The Harangi river basin is one of such basins located in the western ghats of South India. The LULC trend was carried out by considering temporal multispectral data for the years 1990, 2002 and 2008 obtained from Landsat-5TM and IRS 1C (Indian Remote Sensing Satellites). Climate parameters such as rainfall and temperatures were considered for the trend analysis in this study. The rainfall trend was studied using Man-Kendall and Sen’s slope method to understand the spatio-temporal variability. Rainfall shows the decrease trend at Suntikoppa rain gauge station in January and June months. Harangi and Madapura rain gauge stations also show a decrease of rainfall trend for only January month. Temperature trend show increase in maximum temperature for the month of April, May and November whereas increase in minimum temperature was observed in the month of November and December. Spatial extent of LULC found that 52.4% (220.014 km2) of the study area was covered with forest in 1990 which has considerably decreased to 43.9% (184.53 km2) in 2008. There was a rise in total area of plantation crops from 106.27 km2 (25.32%) to 138.20 km2 (32.9%) during this period. Soil and Water Assessment Tool (SWAT) was used to study the effect of LULC on streamflow. SWAT model was calibrated and validated using observed daily streamflow data. The coefficient of correlation (r 2) was found to be 0.87 and 0.86 for calibration and validation, respectively. The results found the annual streamflow to increase by 0.77% from 1990 to 2008 whereas the mean monthly streamflow has increased by 9.46% during this period. This was mainly due to the reduction in forest area observed in LULC maps. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Sustainable Water Resources Management Springer Journals

Analysis of climate trend and effect of land use land cover change on Harangi streamflow, South India: a case study

Loading next page...
 
/lp/springer_journal/analysis-of-climate-trend-and-effect-of-land-use-land-cover-change-on-O0Id0HhCOX
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing Switzerland
Subject
Earth Sciences; Hydrogeology; Hydrology/Water Resources; Sustainable Development; Water Policy/Water Governance/Water Management; Development Economics
ISSN
2363-5037
eISSN
2363-5045
D.O.I.
10.1007/s40899-017-0088-5
Publisher site
See Article on Publisher Site

Abstract

Land use land cover (LULC) and climate change are considered to be driving factors contributing to the alteration of the hydrological regime. Therefore, an attempt has been made to study climate trend and the effect of LULC on streamflow in a basin covered predominantly by forest. The Harangi river basin is one of such basins located in the western ghats of South India. The LULC trend was carried out by considering temporal multispectral data for the years 1990, 2002 and 2008 obtained from Landsat-5TM and IRS 1C (Indian Remote Sensing Satellites). Climate parameters such as rainfall and temperatures were considered for the trend analysis in this study. The rainfall trend was studied using Man-Kendall and Sen’s slope method to understand the spatio-temporal variability. Rainfall shows the decrease trend at Suntikoppa rain gauge station in January and June months. Harangi and Madapura rain gauge stations also show a decrease of rainfall trend for only January month. Temperature trend show increase in maximum temperature for the month of April, May and November whereas increase in minimum temperature was observed in the month of November and December. Spatial extent of LULC found that 52.4% (220.014 km2) of the study area was covered with forest in 1990 which has considerably decreased to 43.9% (184.53 km2) in 2008. There was a rise in total area of plantation crops from 106.27 km2 (25.32%) to 138.20 km2 (32.9%) during this period. Soil and Water Assessment Tool (SWAT) was used to study the effect of LULC on streamflow. SWAT model was calibrated and validated using observed daily streamflow data. The coefficient of correlation (r 2) was found to be 0.87 and 0.86 for calibration and validation, respectively. The results found the annual streamflow to increase by 0.77% from 1990 to 2008 whereas the mean monthly streamflow has increased by 9.46% during this period. This was mainly due to the reduction in forest area observed in LULC maps.

Journal

Sustainable Water Resources ManagementSpringer Journals

Published: Mar 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off