Analysis of celery (Apium graveolens) mannitol dehydrogenase (Mtd) promoter regulation in Arabidopsis suggests roles for MTD in key environmental and metabolic responses

Analysis of celery (Apium graveolens) mannitol dehydrogenase (Mtd) promoter regulation in... Of the growing list of promising genes for plant improvement, some of the most versatile appear to be those involved in sugar alcohol metabolism. Mannitol, one of the best characterized sugar alcohols, is a significant photosynthetic product in many higher plants. The roles of mannitol as both a metabolite and an osmoprotectant in celery (Apium graveolens) are well documented. However, there is growing evidence that `metabolites' can also have key roles in other environmental and developmental responses in plants. For instance, in addition to its other properties, mannitol is an antioxidant and may have significant roles in plant-pathogen interactions. The mannitol catabolic enzyme mannitol dehydrogenase (MTD) is a prime modulator of mannitol accumulation in plants. Because the complex regulation of MTD is central to the balanced integration of mannitol metabolism in celery, its study is crucial in clarifying the physiological role(s) of mannitol metabolism in environmental and metabolic responses. In this study we used transformed Arabidopsis to analyze the multiple environmental and metabolic responses of the Mtd promoter. Our data show that all previously described changes in Mtd RNA accumulation in celery cells mirrored changes in Mtd transcription in Arabidopsis. These include up-regulation by salicylic acid, hexokinase-mediated sugar down-regulation, and down-regulation by salt, osmotic stress and ABA. In contrast, the massive up-regulation of Mtd expression in the vascular tissues of salt-stressed Arabidopsis roots suggests a possible role for MTD in mannitol translocation and unloading and its interrelation with sugar metabolism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Analysis of celery (Apium graveolens) mannitol dehydrogenase (Mtd) promoter regulation in Arabidopsis suggests roles for MTD in key environmental and metabolic responses

Loading next page...
 
/lp/springer_journal/analysis-of-celery-apium-graveolens-mannitol-dehydrogenase-mtd-rwhscAWWuq
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1012395121920
Publisher site
See Article on Publisher Site

Abstract

Of the growing list of promising genes for plant improvement, some of the most versatile appear to be those involved in sugar alcohol metabolism. Mannitol, one of the best characterized sugar alcohols, is a significant photosynthetic product in many higher plants. The roles of mannitol as both a metabolite and an osmoprotectant in celery (Apium graveolens) are well documented. However, there is growing evidence that `metabolites' can also have key roles in other environmental and developmental responses in plants. For instance, in addition to its other properties, mannitol is an antioxidant and may have significant roles in plant-pathogen interactions. The mannitol catabolic enzyme mannitol dehydrogenase (MTD) is a prime modulator of mannitol accumulation in plants. Because the complex regulation of MTD is central to the balanced integration of mannitol metabolism in celery, its study is crucial in clarifying the physiological role(s) of mannitol metabolism in environmental and metabolic responses. In this study we used transformed Arabidopsis to analyze the multiple environmental and metabolic responses of the Mtd promoter. Our data show that all previously described changes in Mtd RNA accumulation in celery cells mirrored changes in Mtd transcription in Arabidopsis. These include up-regulation by salicylic acid, hexokinase-mediated sugar down-regulation, and down-regulation by salt, osmotic stress and ABA. In contrast, the massive up-regulation of Mtd expression in the vascular tissues of salt-stressed Arabidopsis roots suggests a possible role for MTD in mannitol translocation and unloading and its interrelation with sugar metabolism.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off