Analysis of average burst-assembly delay and applications in proportional service differentiation

Analysis of average burst-assembly delay and applications in proportional service differentiation In Optical Burst-Switched (OBS) networks, the limitation of optical buffering devices make it impractical to deploy conventional delay-based differentiation algorithms such as Active Queue Management, Weighted Fair Queuing, etc. Furthermore, only the delay that appears due to the burst-assembly process constitutes a variable quantity (all the other sources of delay are mostly fixed), it is then reasonable to make use of the burst-assembly algorithm to provide class-based delay differentiation. The aim of the following study is twofold: first it defines an average assembly delay metric, which represents the assembly delay experienced by a random arrival at the burst assembler of an edge OBS node; and second, this metric is used to define and configure a two-class burst-assembly policy, which gives preference to high-priority traffic over low-priority packet arrivals. The results show that, (1) tuning the parameters of the two-class assembly algorithm, the two classes of traffic exhibit different burst-assembly delay; and, (2) such parameters can be adjusted to provide a given differentiation ratio in the light of the proportional QoS differentiation approach proposed in the literature. A detailed analysis of the two-class assembly algorithm is given, along with an exhaustive set of experiments and numerical examples that validate the equations derived. Photonic Network Communications Springer Journals

Analysis of average burst-assembly delay and applications in proportional service differentiation

Loading next page...
Springer US
Copyright © 2007 by Springer Science+Business Media, LLC
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


  • Terabit burst switching
    Turner, J.
  • Optical Burst Switching (OBS) – A new paradigm for an optical Internet
    Qiao, C.; Yoo, M.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial