Analysis of 3D signatures recorded using leap motion sensor

Analysis of 3D signatures recorded using leap motion sensor Signature recognition is identifying the signature’s owner, whereas verification is the process to find whether a signature is genuine or forged. Though, both are important in the field of forensic sciences, however, verification is more important to banks and credit card companies. In this paper, we have proposed a methodology to analyze 3D signatures captured using Leap motion sensor. We have extended existing 2D features into 3D from raw signatures and applied well-known classifiers for recognition as well as verification. We have shown that the 3rd dimension, which essentially represents instantaneous pressure during writing, can improve the accuracy of the biometric systems. We have created a large dataset containing more than 2000 signatures registered by 100 volunteers using the Leap motion interface. This has been made available online for the research community. Our analysis shows that, the proposed 3D extension is better than its original 2D version. Recognition and verification accuracy have increased by 6.8% and 9.5%, respectively using k-NN. Similarly, accuracy has increased by 9.9% (recognition) and 6.5% (verification) when HMM is used as the classifier. Similar results have been recorded on benchmark datasets. A comparison with 2D tablet-stylus interface has been carried out which also supports our claims. We believe, Leap motion can be an alternative to the existing biometric setups. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Analysis of 3D signatures recorded using leap motion sensor

Loading next page...
 
/lp/springer_journal/analysis-of-3d-signatures-recorded-using-leap-motion-sensor-xl26NQdjto
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-5011-4
Publisher site
See Article on Publisher Site

Abstract

Signature recognition is identifying the signature’s owner, whereas verification is the process to find whether a signature is genuine or forged. Though, both are important in the field of forensic sciences, however, verification is more important to banks and credit card companies. In this paper, we have proposed a methodology to analyze 3D signatures captured using Leap motion sensor. We have extended existing 2D features into 3D from raw signatures and applied well-known classifiers for recognition as well as verification. We have shown that the 3rd dimension, which essentially represents instantaneous pressure during writing, can improve the accuracy of the biometric systems. We have created a large dataset containing more than 2000 signatures registered by 100 volunteers using the Leap motion interface. This has been made available online for the research community. Our analysis shows that, the proposed 3D extension is better than its original 2D version. Recognition and verification accuracy have increased by 6.8% and 9.5%, respectively using k-NN. Similarly, accuracy has increased by 9.9% (recognition) and 6.5% (verification) when HMM is used as the classifier. Similar results have been recorded on benchmark datasets. A comparison with 2D tablet-stylus interface has been carried out which also supports our claims. We believe, Leap motion can be an alternative to the existing biometric setups.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Jul 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off