Analysis and improvement of the quantum Arnold image scrambling

Analysis and improvement of the quantum Arnold image scrambling We investigate the quantum Arnold image scrambling proposed by Jiang et al. (Quantum Inf Process 13(5):1223–1236, 2014). It is aimed to realize Arnold and Fibonacci image scrambling in quantum computer. However, the algorithm does not perceive the particularities of “mod $$2^{n}$$ 2 n ,” multiply by 2, and subtraction in binary arithmetic. In this paper, a possible simplified version is presented based on 3 theorems and a corollary which represent the particularities of binary arithmetic. The theoretical analysis indicates that the network complexity is dropped from 140n $$\sim $$ ∼ 168n to 28n $$\sim $$ ∼ 56n and the unitarity of circuits is not destroyed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Analysis and improvement of the quantum Arnold image scrambling

Loading next page...
 
/lp/springer_journal/analysis-and-improvement-of-the-quantum-arnold-image-scrambling-tP3t32HITZ
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-014-0749-3
Publisher site
See Article on Publisher Site

Abstract

We investigate the quantum Arnold image scrambling proposed by Jiang et al. (Quantum Inf Process 13(5):1223–1236, 2014). It is aimed to realize Arnold and Fibonacci image scrambling in quantum computer. However, the algorithm does not perceive the particularities of “mod $$2^{n}$$ 2 n ,” multiply by 2, and subtraction in binary arithmetic. In this paper, a possible simplified version is presented based on 3 theorems and a corollary which represent the particularities of binary arithmetic. The theoretical analysis indicates that the network complexity is dropped from 140n $$\sim $$ ∼ 168n to 28n $$\sim $$ ∼ 56n and the unitarity of circuits is not destroyed.

Journal

Quantum Information ProcessingSpringer Journals

Published: May 11, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off