Anaerobiosis-specific interaction of tobacco nuclear factors with cis-regulatory sequences in the maize GapC4 promoter

Anaerobiosis-specific interaction of tobacco nuclear factors with cis-regulatory sequences in the... The promoter of the maize glyceraldehyde-3-phosphate dehydrogenase 4 gene (GapC4) confers strong, specific and ubiquitous anaerobic reporter gene expression in tobacco. To identify factors required for heterologous anaerobic gene expression, 19 progressive 5′ and 3′ promoter deletions were linked to a chimeric GapC4 TATA box-β-glucuronidase (GUS) reporter gene construct and transformed into tobacco. In all transgenic lines aerobic expression values were in the range obtained for negative controls while histochemical GUS assays reveal some weak expression in roots only. Anaerobic induction of about 100-fold to more than 1000-fold above unspecific background is mediated by a region of about 190 bp of the GapC4 promoter. Anaerobic reporter gene induction strongly decreases upon deletion of a 20 bp fragment from −286 to −266 relative to the transcription start point. This fragment harbours putative cis-acting sequences. Electrophoretic mobility shift assays with a 50 bp fragment harbouring these cis sequences reveal a high-mobility complex that is formed with nuclear extracts from aerobic and anaerobic leaf tissue while an additional low-mobility complex is anaerobiosis-specific. The formation of the high-mobility complex requires the sequence GTGGGCCCG. The 50 bp fragment alone confers weak and orientation-dependent anaerobic induction to a GapC4 TATA box-β-glucuronidase (GUS) reporter gene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Anaerobiosis-specific interaction of tobacco nuclear factors with cis-regulatory sequences in the maize GapC4 promoter

Loading next page...
 
/lp/springer_journal/anaerobiosis-specific-interaction-of-tobacco-nuclear-factors-with-cis-srWW1EFfsI
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006419232075
Publisher site
See Article on Publisher Site

Abstract

The promoter of the maize glyceraldehyde-3-phosphate dehydrogenase 4 gene (GapC4) confers strong, specific and ubiquitous anaerobic reporter gene expression in tobacco. To identify factors required for heterologous anaerobic gene expression, 19 progressive 5′ and 3′ promoter deletions were linked to a chimeric GapC4 TATA box-β-glucuronidase (GUS) reporter gene construct and transformed into tobacco. In all transgenic lines aerobic expression values were in the range obtained for negative controls while histochemical GUS assays reveal some weak expression in roots only. Anaerobic induction of about 100-fold to more than 1000-fold above unspecific background is mediated by a region of about 190 bp of the GapC4 promoter. Anaerobic reporter gene induction strongly decreases upon deletion of a 20 bp fragment from −286 to −266 relative to the transcription start point. This fragment harbours putative cis-acting sequences. Electrophoretic mobility shift assays with a 50 bp fragment harbouring these cis sequences reveal a high-mobility complex that is formed with nuclear extracts from aerobic and anaerobic leaf tissue while an additional low-mobility complex is anaerobiosis-specific. The formation of the high-mobility complex requires the sequence GTGGGCCCG. The 50 bp fragment alone confers weak and orientation-dependent anaerobic induction to a GapC4 TATA box-β-glucuronidase (GUS) reporter gene.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off