Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Anadromy and the marine migrations of Pacific salmon and trout: Rounsefell revisited

Anadromy and the marine migrations of Pacific salmon and trout: Rounsefell revisited Anadromy is a defining trait in salmonid fishes but it is expressed to different extents among the species in the family, as reviewed in a classic paper by Rounsefell (1958). The present paper re-examines the subject, assessing the degree of anadromy within the genus Oncorhynchus, using Rounsefell’s six criteria: extent of migrations at sea, duration of stay at sea, state of maturity attained at sea, spawning habits and habitats, post-spawning mortality, and occurrence of freshwater forms of the species. The genus ranges from pink salmon (O. gorbuscha), the most fully anadromous species in the family, to entirely non-anadromous species closely related to rainbow trout (O. mykiss), including Mexican golden trout (O. chrysogaster), Gila and Apache trout (O. gilae), and sub-species of cutthroat trout (O. clarki). This paper provides updated information on anadromy and marine migration patterns, emphasizing the iteroparous species, cutthroat (O. clarki) and rainbow (O. mykiss) trout. These two species display widely ranging patterns of anadromy, including truly “landlocked” populations and residents with easy access to the sea. Anadromous rainbow trout (known as steelhead) populations also vary greatly in their distribution at sea, incidence of repeat spawning, and associated traits. We conclude, as did Rounsefell, that anadromy is not a single trait with two conditions (anadromous or non-anadromous). Rather, it reflects a suite of life history traits that are expressed as points along continua for each species and population. Further research is needed in the marine ecology of all species but especially trout, as they are less well known but apparently more variable in patterns of anadromy and life history than salmon species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Anadromy and the marine migrations of Pacific salmon and trout: Rounsefell revisited

Loading next page...
 
/lp/springer_journal/anadromy-and-the-marine-migrations-of-pacific-salmon-and-trout-Z1yx9e0gHZ

References (145)

Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
DOI
10.1007/s11160-005-0802-5
Publisher site
See Article on Publisher Site

Abstract

Anadromy is a defining trait in salmonid fishes but it is expressed to different extents among the species in the family, as reviewed in a classic paper by Rounsefell (1958). The present paper re-examines the subject, assessing the degree of anadromy within the genus Oncorhynchus, using Rounsefell’s six criteria: extent of migrations at sea, duration of stay at sea, state of maturity attained at sea, spawning habits and habitats, post-spawning mortality, and occurrence of freshwater forms of the species. The genus ranges from pink salmon (O. gorbuscha), the most fully anadromous species in the family, to entirely non-anadromous species closely related to rainbow trout (O. mykiss), including Mexican golden trout (O. chrysogaster), Gila and Apache trout (O. gilae), and sub-species of cutthroat trout (O. clarki). This paper provides updated information on anadromy and marine migration patterns, emphasizing the iteroparous species, cutthroat (O. clarki) and rainbow (O. mykiss) trout. These two species display widely ranging patterns of anadromy, including truly “landlocked” populations and residents with easy access to the sea. Anadromous rainbow trout (known as steelhead) populations also vary greatly in their distribution at sea, incidence of repeat spawning, and associated traits. We conclude, as did Rounsefell, that anadromy is not a single trait with two conditions (anadromous or non-anadromous). Rather, it reflects a suite of life history traits that are expressed as points along continua for each species and population. Further research is needed in the marine ecology of all species but especially trout, as they are less well known but apparently more variable in patterns of anadromy and life history than salmon species.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Jun 22, 2005

There are no references for this article.