An unusual seed-specific 3-ketoacyl-ACP synthase associated with the biosynthesis of petroselinic acid in coriander

An unusual seed-specific 3-ketoacyl-ACP synthase associated with the biosynthesis of petroselinic... Petroselinic acid (18:1Δ6) is the major component of the seed oil of Umbelliferae species such as coriander (Coriandrum sativum) as well as Araliaceae and Garryaceae species. This unusual fatty acid is synthesized in plastids by the Δ4 desaturation of palmitoyl-acyl carrier protein (16:0-ACP) and subsequent elongation of Δ4-hexadecenoyl (16:1Δ4)-ACP. To characterize the enzymatic nature of the elongation reaction, an in vitro assay was developed with 16:1Δ4-ACP and 16:0-ACP as substrates. Extracts from developing coriander seeds elongated 16:1Δ4-ACP in a competitive assay at rates ten-fold greater than that with 16:0-ACP. In contrast, extracts from castor seeds, which do not synthesize petroselinic acid, displayed a strong preference for the elongation of 16:0-ACP rather than 16:1Δ4-ACP. In addition, the elongation of 16:1Δ4-ACP and 16:0-ACP by coriander seed extracts was strongly inhibited by cerulenin at concentrations as low as 10 μM. This finding suggested that the elongation of 16:1Δ4-ACP and 16:0-ACP in coriander seed is catalyzed by a 3-ketoacyl-ACP synthase (KAS) I-type enzyme(s), rather than a KAS II-type activity that is typically associated with 16:0-ACP elongation. Consistent with this, a cDNA for a diverged form of KAS I was isolated from a cDNA library prepared from developing coriander seed. Using a variety of heterologous probing techniques, no KAS II-type cDNAs could be identified in this library. Multiple alignment of KAS amino acid sequences indicated that, although the polypeptide corresponding to the coriander cDNA is more closely related to KAS I, its active site motif deviates from those found in both KAS I and KAS II enzymes. Also suggestive of a possible role in petroselinic acid synthesis, antibodies raised to the recombinant protein recognize an abundant 45 kDa polypeptide in coriander endosperm that is not detected in coriander leaves. These antibodies also recognize a major band of similar size in developing seeds of English ivy (Hedera helix), an Araliaceae species that also accumulates petroselinic acid in a seed-specific manner. Plant Molecular Biology Springer Journals

An unusual seed-specific 3-ketoacyl-ACP synthase associated with the biosynthesis of petroselinic acid in coriander

Loading next page...
Kluwer Academic Publishers
Copyright © 2001 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial