An unconventional mechanism of lift production during the downstroke in a hovering bird (Zosterops japonicus)

An unconventional mechanism of lift production during the downstroke in a hovering bird... An unconventional mechanism of ventral clap is exploited by hovering passerines to produce lift. Quantitative visualization of the wake flow, analysis of kinematics and evaluation of the transient lift force was conducted to dissect the biomechanical role of the ventral clap in the asymmetrical hovering flight of passerines. The ventral clap can first abate and then augment lift production during the downstroke; the net effect of the ventral clap on lift production is, however, positive because the extent of lift augmentation is greater than the extent of lift abatement. Moreover, the ventral clap is inferred to compensate for the zero lift production of the upstroke because the clapping wings induce a substantial elevation of the lift force at the end of the downstroke. Overall, our observations shed light on the aerodynamic function of the ventral clap and offer biomechanical insight into how a bird hovers without kinematically mimicking hovering hummingbirds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

An unconventional mechanism of lift production during the downstroke in a hovering bird (Zosterops japonicus)

Loading next page...
 
/lp/springer_journal/an-unconventional-mechanism-of-lift-production-during-the-downstroke-3SjyhK0tRR
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1145-8
Publisher site
See Article on Publisher Site

Abstract

An unconventional mechanism of ventral clap is exploited by hovering passerines to produce lift. Quantitative visualization of the wake flow, analysis of kinematics and evaluation of the transient lift force was conducted to dissect the biomechanical role of the ventral clap in the asymmetrical hovering flight of passerines. The ventral clap can first abate and then augment lift production during the downstroke; the net effect of the ventral clap on lift production is, however, positive because the extent of lift augmentation is greater than the extent of lift abatement. Moreover, the ventral clap is inferred to compensate for the zero lift production of the upstroke because the clapping wings induce a substantial elevation of the lift force at the end of the downstroke. Overall, our observations shed light on the aerodynamic function of the ventral clap and offer biomechanical insight into how a bird hovers without kinematically mimicking hovering hummingbirds.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 22, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off