An SRAM-based novel hardware architecture for longest prefix matching for IP route lookup

An SRAM-based novel hardware architecture for longest prefix matching for IP route lookup A static random access memory (SRAM)-based novel hardware architecture for longest prefix match (LPM) search scheme has been proposed in this paper. The key concept of this architecture is to store the IP prefixes virtually in the forwarding table. This architecture reduces memory consumption by using a two-tier hierarchical SRAM-based memory structure for maintaining the next hop port information. Originally, next hop addresses are kept in the shared global memory called next hop global memory (NHGM) and its links are maintained in another memory, called next hop link memory (NHLM). This approximately reduces memory consumption by 50–62.5% compared to existing SRAM-based schemes. The proposed architecture consumes single memory write cycle to store an IP prefix and also takes single memory read cycle for LPM search. However, finding next hop information incurs two memory read cycles due to hierarchical next hop memory structure. The proposed scheme performs an LPM lookup operation in 1.05–1.31 ns in IPv4 and between 1.05 and 1.6 ns in IPv6. This results into LPM search throughput of 950 million lookups per second (MLPS) to 760 MLPS in IPv4 and between 620 and 950 MLPS in IPv6. The average search throughput achievable from this architecture is roughly 850 MLPS in IPv4 and 780 MLPS in IPv6. The numerical results show that this architecture significantly reduces memory requirement, power consumption, and transistor-count/bit requirement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

An SRAM-based novel hardware architecture for longest prefix matching for IP route lookup

Loading next page...
 
/lp/springer_journal/an-sram-based-novel-hardware-architecture-for-longest-prefix-matching-G55OaUdJZj
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-016-0674-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial