An r-dominance-based preference multi-objective optimization for many-objective optimization

An r-dominance-based preference multi-objective optimization for many-objective optimization Evolutionary multi-objective optimization (EMO) algorithms have been used in finding a representative set of Pareto-optimal solutions in the past decade and beyond. However, most of Pareto domination-based multi-objective optimization evolutionary algorithms (MOEAs) are not suitable for many-objective optimization, in which, a good trade-off among many objectives becomes very difficult. In real-world applications, the fact is that the decision-maker is not interested in the overall Pareto-optimal front since the final decision is a unique or several solutions. So the decision-maker can incorporate his/her preferences into the search process of MOEAs to guide the search toward the preferred parts of the Pareto region rather than the whole Pareto-optimal region. In this paper, we hybridize the classical Pareto dominance principle with reference-based dominance and propose a reference-dominance-based preference multi-objective optimization algorithm (r-PMOA). The proposed method has been extensively compared with other recently proposed preference-based EMO approaches over several benchmark problems of multi-objective optimization having 2–10 objectives. The results of the experiment indicate that r-PMOA achieves competitive results. Soft Computing Springer Journals

An r-dominance-based preference multi-objective optimization for many-objective optimization

Loading next page...
Springer Berlin Heidelberg
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Mathematical Logic and Foundations; Control, Robotics, Mechatronics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial