An optimization approach for path planning of high-quality and uniform additive manufacturing

An optimization approach for path planning of high-quality and uniform additive manufacturing Material extrusion-based additive manufacturing (AM) is an effective tool in producing prototypes and final parts without geometrical complexity limitations. Despite having widespread applications and enormous advantages over conventional manufacturing techniques, the proliferation of extrusion-based AM has been limited by the low deposition quality and the poor surface finish of printed parts. To address these issues, an optimized path planning technique is proposed in this paper. The sharp corners and the non-uniform spacing between adjacent path elements in the final planned path are two major causes of unevenness of the deposited surface. The proposed method tries to decrease the number of sharp corners by using an implicit algorithm derived from the level sets of the input contours. The curvature information is used to smooth the generated contour paths. Subsequently, to achieve uniform spacing, local optimization is applied on the smoothed path by adaptively adjusting the locations of points on the path. These optimizations lead to a smoother part surface, when compared to those of typical fill path techniques. The proposed method is validated using several examples of parts, many of which are then constructed using a 3D printer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

An optimization approach for path planning of high-quality and uniform additive manufacturing

Loading next page...
 
/lp/springer_journal/an-optimization-approach-for-path-planning-of-high-quality-and-uniform-b2ioktCZ5v
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0207-3
Publisher site
See Article on Publisher Site

Abstract

Material extrusion-based additive manufacturing (AM) is an effective tool in producing prototypes and final parts without geometrical complexity limitations. Despite having widespread applications and enormous advantages over conventional manufacturing techniques, the proliferation of extrusion-based AM has been limited by the low deposition quality and the poor surface finish of printed parts. To address these issues, an optimized path planning technique is proposed in this paper. The sharp corners and the non-uniform spacing between adjacent path elements in the final planned path are two major causes of unevenness of the deposited surface. The proposed method tries to decrease the number of sharp corners by using an implicit algorithm derived from the level sets of the input contours. The curvature information is used to smooth the generated contour paths. Subsequently, to achieve uniform spacing, local optimization is applied on the smoothed path by adaptively adjusting the locations of points on the path. These optimizations lead to a smoother part surface, when compared to those of typical fill path techniques. The proposed method is validated using several examples of parts, many of which are then constructed using a 3D printer.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Mar 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off