Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

An optimization approach for path planning of high-quality and uniform additive manufacturing

An optimization approach for path planning of high-quality and uniform additive manufacturing Material extrusion-based additive manufacturing (AM) is an effective tool in producing prototypes and final parts without geometrical complexity limitations. Despite having widespread applications and enormous advantages over conventional manufacturing techniques, the proliferation of extrusion-based AM has been limited by the low deposition quality and the poor surface finish of printed parts. To address these issues, an optimized path planning technique is proposed in this paper. The sharp corners and the non-uniform spacing between adjacent path elements in the final planned path are two major causes of unevenness of the deposited surface. The proposed method tries to decrease the number of sharp corners by using an implicit algorithm derived from the level sets of the input contours. The curvature information is used to smooth the generated contour paths. Subsequently, to achieve uniform spacing, local optimization is applied on the smoothed path by adaptively adjusting the locations of points on the path. These optimizations lead to a smoother part surface, when compared to those of typical fill path techniques. The proposed method is validated using several examples of parts, many of which are then constructed using a 3D printer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

An optimization approach for path planning of high-quality and uniform additive manufacturing

Loading next page...
 
/lp/springer_journal/an-optimization-approach-for-path-planning-of-high-quality-and-uniform-b2ioktCZ5v

References (33)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
DOI
10.1007/s00170-017-0207-3
Publisher site
See Article on Publisher Site

Abstract

Material extrusion-based additive manufacturing (AM) is an effective tool in producing prototypes and final parts without geometrical complexity limitations. Despite having widespread applications and enormous advantages over conventional manufacturing techniques, the proliferation of extrusion-based AM has been limited by the low deposition quality and the poor surface finish of printed parts. To address these issues, an optimized path planning technique is proposed in this paper. The sharp corners and the non-uniform spacing between adjacent path elements in the final planned path are two major causes of unevenness of the deposited surface. The proposed method tries to decrease the number of sharp corners by using an implicit algorithm derived from the level sets of the input contours. The curvature information is used to smooth the generated contour paths. Subsequently, to achieve uniform spacing, local optimization is applied on the smoothed path by adaptively adjusting the locations of points on the path. These optimizations lead to a smoother part surface, when compared to those of typical fill path techniques. The proposed method is validated using several examples of parts, many of which are then constructed using a 3D printer.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Mar 2, 2017

There are no references for this article.