An optical catechol biosensor based on a desert truffle tyrosinase extract immobilized into a sol–gel silica layered matrix

An optical catechol biosensor based on a desert truffle tyrosinase extract immobilized into a... An optical biosensor for the determination of catechol, a widely used yet toxic and carcinogenic molecule, is proposed using a crude extract of desert truffle (Terfezia leonis Tul.) as an enzymatic source of tyrosinase. The biosensor is constructed by the immobilization of tyrosinase crude extract in a bi-layered silica gel film prepared by dip-coating of an alkoxide/colloidal silica solution containing the enzyme on glass slide. Encapsulation has a moderate effect of the enzyme optimal pH stability but largely increases its thermal stability. Immobilized enzymes have a higher substrate affinity towards catechol but smaller maximum conversion velocity. The optical biosensor provides a linear response for catechol in the concentration range of 50–400 µM and a limit of detection was 52 µM. AFM studies show that the enzymes impact on the silica gel structure, preventing further deposition of additional layers. Comparison with similar dopamine biosensors points out that the impact of encapsulation on enzymatic activity may depend on the considered substrate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Sol-Gel Science and Technology Springer Journals

An optical catechol biosensor based on a desert truffle tyrosinase extract immobilized into a sol–gel silica layered matrix

Loading next page...
 
/lp/springer_journal/an-optical-catechol-biosensor-based-on-a-desert-truffle-tyrosinase-frT9AWk0ua
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Ceramics, Glass, Composites, Natural Materials; Inorganic Chemistry; Optical and Electronic Materials; Nanotechnology
ISSN
0928-0707
eISSN
1573-4846
D.O.I.
10.1007/s10971-018-4696-9
Publisher site
See Article on Publisher Site

Abstract

An optical biosensor for the determination of catechol, a widely used yet toxic and carcinogenic molecule, is proposed using a crude extract of desert truffle (Terfezia leonis Tul.) as an enzymatic source of tyrosinase. The biosensor is constructed by the immobilization of tyrosinase crude extract in a bi-layered silica gel film prepared by dip-coating of an alkoxide/colloidal silica solution containing the enzyme on glass slide. Encapsulation has a moderate effect of the enzyme optimal pH stability but largely increases its thermal stability. Immobilized enzymes have a higher substrate affinity towards catechol but smaller maximum conversion velocity. The optical biosensor provides a linear response for catechol in the concentration range of 50–400 µM and a limit of detection was 52 µM. AFM studies show that the enzymes impact on the silica gel structure, preventing further deposition of additional layers. Comparison with similar dopamine biosensors points out that the impact of encapsulation on enzymatic activity may depend on the considered substrate.

Journal

Journal of Sol-Gel Science and TechnologySpringer Journals

Published: May 23, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off