An iterative heuristic approach for channel and power allocation in wireless networks

An iterative heuristic approach for channel and power allocation in wireless networks A large number of access points (APs) may be required to provide network coverage in a given environment. However, a non-optimized deployment of these APs can reduce the network performance significantly due to the excessive interference. The optimization of the channel and transmit power is an efficient method to reduce the interference and therefore guarantee a minimally acceptable performance. In this paper, we propose a heuristic algorithm to find a proper channel and transmit power configuration for all APs within a network. The algorithm evaluates the network, using theoretical models, and employs several techniques to optimize the channel and the transmit power to increase the network performance. We also estimate the complexity of the proposed algorithm comparing it with an exhaustive search approach. The results show that the proposed algorithm can arrive at a solution very close to the optimal with a much reduced computational complexity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Telecommunications Springer Journals

An iterative heuristic approach for channel and power allocation in wireless networks

Loading next page...
 
/lp/springer_journal/an-iterative-heuristic-approach-for-channel-and-power-allocation-in-5Wx0ZGXo2d
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Institut Mines-Télécom and Springer-Verlag France SAS
Subject
Engineering; Communications Engineering, Networks; Information Systems and Communication Service; Signal,Image and Speech Processing; Computer Communication Networks; Information and Communication, Circuits; R & D/Technology Policy
ISSN
0003-4347
eISSN
1958-9395
D.O.I.
10.1007/s12243-017-0612-5
Publisher site
See Article on Publisher Site

Abstract

A large number of access points (APs) may be required to provide network coverage in a given environment. However, a non-optimized deployment of these APs can reduce the network performance significantly due to the excessive interference. The optimization of the channel and transmit power is an efficient method to reduce the interference and therefore guarantee a minimally acceptable performance. In this paper, we propose a heuristic algorithm to find a proper channel and transmit power configuration for all APs within a network. The algorithm evaluates the network, using theoretical models, and employs several techniques to optimize the channel and the transmit power to increase the network performance. We also estimate the complexity of the proposed algorithm comparing it with an exhaustive search approach. The results show that the proposed algorithm can arrive at a solution very close to the optimal with a much reduced computational complexity.

Journal

Annals of TelecommunicationsSpringer Journals

Published: Nov 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off