An irrotation correction on pressure gradient and orthogonal-path integration for PIV-based pressure reconstruction

An irrotation correction on pressure gradient and orthogonal-path integration for PIV-based... Particle image velocimetry (PIV)-based pressure reconstruction has become a popular technique in experimental fluid mechanics. Noise or errors in raw velocity field would significantly affect the quality of pressure reconstruction in PIV measurement. To reduce experimental errors in pressure gradient and improve the precision of reconstructed pressure field, a minimal 2-norm criteria-based new technique called irrotation correction (IC) with orthogonal decomposition is developed. The pressure reconstruction is therefore composed of three steps: calculation of pressure gradient from time-resolved velocity fields of PIV, an irrotation correction on the pressure gradient field, and finally a simple orthogonal-path integration (OPI) for pressure. Systematic assessments of IC algorithm are performed on synthetic solid-body rotation flow, direct numerical simulations of a channel flow and an isotropic turbulent flow. The results show that IC is a robust algorithm which can significantly improve the accuracy of pressure reconstruction primarily in the low wave number domain. After irrotation correction, noisy pressure gradient field ideally becomes an irrotational field on which the pressure integration is independent of integrating paths. Therefore, an OPI algorithm is proposed to perform the pressure integration in an efficient way with very few integration paths. This makes the new technique to be a doable method on three-dimensional pressure reconstruction with acceptable computational cost. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

An irrotation correction on pressure gradient and orthogonal-path integration for PIV-based pressure reconstruction

Loading next page...
 
/lp/springer_journal/an-irrotation-correction-on-pressure-gradient-and-orthogonal-path-NVDs1I5YJU
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2189-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial