An investigation on changes in glacier mass balance and hypsometry for a small mountainous glacier in the northeastern Tibetan Plateau

An investigation on changes in glacier mass balance and hypsometry for a small mountainous... Mass balance is a key indicator of the sensitivity of glaciers to climate change. Field measurement is one of the most important ways to study the mass balance of glaciers. Based on observations of mass balance in the ablation zone of Shuiguan Glacier No.4, Qilian Mountains, China, combined with the balance ratio between accumulation and ablation, we established a linear relation between mass balance and altitude. The results show that the mean annual mass balance of this glacier was ~510 mm w.e. from 2010 to 2013. The uncertainty in the balance ratio value does not lead to a significant difference in the mass balance. The equilibrium-line altitude rose by 180 m from 1972 to 2013, while the accumulation—area ratio decreased from 0.68 to 0.25. These variations may be caused by changes in air temperature. Meanwhile, the glacier is at present not in a steady state, and it may continue to shrink by a further ~900 m, even without further climate warming. In the western Lenglongling Mountains, assuming that the glaciers are in a steady state and the Equilibrium-line altitudes (ELAs) remain similar, there will be only 46 glaciers left, covering a total area of 19.2 km2, in other words, only 22.3% of the glaciers area in 1972. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Mountain Science Springer Journals

An investigation on changes in glacier mass balance and hypsometry for a small mountainous glacier in the northeastern Tibetan Plateau

Loading next page...
 
/lp/springer_journal/an-investigation-on-changes-in-glacier-mass-balance-and-hypsometry-for-dB35gy8Dls
Publisher
Science Press
Copyright
Copyright © 2017 by Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany
Subject
Earth Sciences; Earth Sciences, general; Geography, general; Environment, general; Ecology
ISSN
1672-6316
eISSN
1993-0321
D.O.I.
10.1007/s11629-016-4064-6
Publisher site
See Article on Publisher Site

Abstract

Mass balance is a key indicator of the sensitivity of glaciers to climate change. Field measurement is one of the most important ways to study the mass balance of glaciers. Based on observations of mass balance in the ablation zone of Shuiguan Glacier No.4, Qilian Mountains, China, combined with the balance ratio between accumulation and ablation, we established a linear relation between mass balance and altitude. The results show that the mean annual mass balance of this glacier was ~510 mm w.e. from 2010 to 2013. The uncertainty in the balance ratio value does not lead to a significant difference in the mass balance. The equilibrium-line altitude rose by 180 m from 1972 to 2013, while the accumulation—area ratio decreased from 0.68 to 0.25. These variations may be caused by changes in air temperature. Meanwhile, the glacier is at present not in a steady state, and it may continue to shrink by a further ~900 m, even without further climate warming. In the western Lenglongling Mountains, assuming that the glaciers are in a steady state and the Equilibrium-line altitudes (ELAs) remain similar, there will be only 46 glaciers left, covering a total area of 19.2 km2, in other words, only 22.3% of the glaciers area in 1972.

Journal

Journal of Mountain ScienceSpringer Journals

Published: Aug 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off