An investigation of asymmetric flow features in a scaled-up driven model of the human vocal folds

An investigation of asymmetric flow features in a scaled-up driven model of the human vocal folds Flow through a driven, 7.5 times life-size vocal fold model was investigated at corresponding life-size flow rates of Q mean  = 89.1 ml/s, 159.4 ml/s, and 253.0 ml/s. The flow was scaled to match physiological values for Reynolds, Strouhal, and Euler numbers. The models were driven at a life-size frequency of 94 Hz. Particle image velocimetry (PIV) data were acquired in the anterior–posterior midplane of the glottis, and the unsteady transglottal pressure drop across the vocal folds was simultaneously measured. Flow and pressure data were obtained at four discrete instances during the closing phases of the phonatory cycle for which t/T open  = 0.60, 0.70, 0.80, and 0.90. The glottal jet trajectory exhibited a bimodal distribution of flow attachment between the two medial surfaces of the glottis. Vortex shedding at the trailing edge separation point generated instabilities in the shear layer, which caused large oscillations in the glottal jet orientation downstream of the glottal exit. The development of the Coanda effect during the glottal cycle was found to have minimal impact on the transglottal pressure drop, suggesting that flow orientation does not directly influence the dipole sound source. The change in transglottal pressure drop as a result of jet trajectory was less than 2% for all three investigated flow rates. Experiments in Fluids Springer Journals

An investigation of asymmetric flow features in a scaled-up driven model of the human vocal folds

Loading next page...
Copyright © 2010 by Springer-Verlag
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial