An Inverse Problem: Trappers Drove Hares to Eat Lynx

An Inverse Problem: Trappers Drove Hares to Eat Lynx The Canadian lynx and snowshoe hare pelt data by the Hudson Bay Company did not fit the classical predator–prey theory. Rather than following the peak density of the hare, that of the lynx leads it, creating the hares-eat-lynx (HEL) paradox. Although trappers were suspected to play a role, no mathematical model has ever demonstrated the HEL effect. Here we show that the long-held assumption that the pelt number is a proxy of the wild populations is false and that when the data are modeled by the harvest rates by the trappers, the problem is finally resolved: both the HEL paradox and the classical theory are unified in our mechanistic hare-lynx-competitor-trapper (HLCT) model where competitor stands for all predators of the hares other than the lynx. The result is obtained by systematically fitting the data to various models using Newton’s inverse problem method. Main findings of this study include: the prey-eats-predator paradox in kills by an intraguild top-predator can occur if the top-predator prefers the predator to the prey; the benchmark HLCT model is more sensitive to all lynx-trapper interactions than to the respective hare-trapper interactions; the Hudson Bay Company’s hare pelt number maybe under-reported; and, the most intriguing of all, the trappers did not interfere in each other’s trapping activities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Biotheoretica Springer Journals

An Inverse Problem: Trappers Drove Hares to Eat Lynx

Loading next page...
 
/lp/springer_journal/an-inverse-problem-trappers-drove-hares-to-eat-lynx-eunltaSWue
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Philosophy; Philosophy of Biology; Evolutionary Biology
ISSN
0001-5342
eISSN
1572-8358
D.O.I.
10.1007/s10441-018-9333-z
Publisher site
See Article on Publisher Site

Abstract

The Canadian lynx and snowshoe hare pelt data by the Hudson Bay Company did not fit the classical predator–prey theory. Rather than following the peak density of the hare, that of the lynx leads it, creating the hares-eat-lynx (HEL) paradox. Although trappers were suspected to play a role, no mathematical model has ever demonstrated the HEL effect. Here we show that the long-held assumption that the pelt number is a proxy of the wild populations is false and that when the data are modeled by the harvest rates by the trappers, the problem is finally resolved: both the HEL paradox and the classical theory are unified in our mechanistic hare-lynx-competitor-trapper (HLCT) model where competitor stands for all predators of the hares other than the lynx. The result is obtained by systematically fitting the data to various models using Newton’s inverse problem method. Main findings of this study include: the prey-eats-predator paradox in kills by an intraguild top-predator can occur if the top-predator prefers the predator to the prey; the benchmark HLCT model is more sensitive to all lynx-trapper interactions than to the respective hare-trapper interactions; the Hudson Bay Company’s hare pelt number maybe under-reported; and, the most intriguing of all, the trappers did not interfere in each other’s trapping activities.

Journal

Acta BiotheoreticaSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off