An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption

An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting... This paper introduces an integrated algorithm for forecasting electricity consumption (EL) based on fuzzy regression, time series and principal component analysis (PCA) in uncertain markets such as Iran. The algorithm is examined by mean absolute percentage error, analysis of variance (ANOVA) and Duncan Multiple Range Test. PCA is used to identify the input variables for the fuzzy regression and time series models. Monthly EL in Iran is used to show the superiority of the algorithm. Moreover, it is shown that the selected fuzzy regression model has better estimated values for total EL than time series. The algorithm provides as good results as intelligent methods. However, it is shown that the algorithm does not require utilization of preprocessing methods but genetic algorithm, artificial neural network and fuzzy inference system require preprocessing which could be a cumbersome task to deal with ambiguous data. The unique features of the proposed algorithm are three fold. First, two type of fuzzy regressions with and without preprocessed data are prescribed by the algorithm in order to minimize the bias. Second, it uses PCA approach instead of trial and error method for selecting the most important input variables. Third, ANOVA is used to statistically compare fuzzy regression and time series with actual data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption

Loading next page...
 
/lp/springer_journal/an-integrated-fuzzy-mathematical-model-and-principal-component-t0pYQIZDb0
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Social Sciences, general; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-011-9649-0
Publisher site
See Article on Publisher Site

Abstract

This paper introduces an integrated algorithm for forecasting electricity consumption (EL) based on fuzzy regression, time series and principal component analysis (PCA) in uncertain markets such as Iran. The algorithm is examined by mean absolute percentage error, analysis of variance (ANOVA) and Duncan Multiple Range Test. PCA is used to identify the input variables for the fuzzy regression and time series models. Monthly EL in Iran is used to show the superiority of the algorithm. Moreover, it is shown that the selected fuzzy regression model has better estimated values for total EL than time series. The algorithm provides as good results as intelligent methods. However, it is shown that the algorithm does not require utilization of preprocessing methods but genetic algorithm, artificial neural network and fuzzy inference system require preprocessing which could be a cumbersome task to deal with ambiguous data. The unique features of the proposed algorithm are three fold. First, two type of fuzzy regressions with and without preprocessed data are prescribed by the algorithm in order to minimize the bias. Second, it uses PCA approach instead of trial and error method for selecting the most important input variables. Third, ANOVA is used to statistically compare fuzzy regression and time series with actual data.

Journal

Quality & QuantitySpringer Journals

Published: Jan 13, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off