An integrated framework for software to provide yield data cleaning and estimation of an opportunity index for site-specific crop management

An integrated framework for software to provide yield data cleaning and estimation of an... This paper proposes an integrated framework for software that provides yield data cleaning and yield opportunity index (Y i ) calculation for site-specific crop management (SSCM). The artifacts in many yield data sets, which inevitably occur, can pose a significant effect on the validity of Yi. Automated and standardised yield correction procedures were designed to improve the data quality by removing: (1) unreasonable outliers; (2) distribution outliers (globally and locally); and (3) position errors. The calculation of Yi uses two aspects of crop yield assessment, the magnitude of yield variation and the spatial structure of the variation. The cleaning algorithms were applied to four yield data sets with known integrity issues to demonstrate effectiveness. Approximately 13–20 % of the original yield data were removed, and this resulted in an increased mean yield of 0.13 t/ha (average). The semivariograms of cleaned data were shown to possess smaller nugget values compared with the original data. The opportunity index calculation algorithm was demonstrated on a field with nine seasons of yield data. The results demonstrated that using a ranking of Yi provides a rational, agronomic assessment of the opportunity for SSCM based on the quantity and pattern of production variability displayed in yield data sets. This provides farm managers with a rapid way to assess whether the observed variability deserves further investigation and eventual investment in SSCM operations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

An integrated framework for software to provide yield data cleaning and estimation of an opportunity index for site-specific crop management

Loading next page...
 
/lp/springer_journal/an-integrated-framework-for-software-to-provide-yield-data-cleaning-yQo3DWAID6
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-012-9300-7
Publisher site
See Article on Publisher Site

Abstract

This paper proposes an integrated framework for software that provides yield data cleaning and yield opportunity index (Y i ) calculation for site-specific crop management (SSCM). The artifacts in many yield data sets, which inevitably occur, can pose a significant effect on the validity of Yi. Automated and standardised yield correction procedures were designed to improve the data quality by removing: (1) unreasonable outliers; (2) distribution outliers (globally and locally); and (3) position errors. The calculation of Yi uses two aspects of crop yield assessment, the magnitude of yield variation and the spatial structure of the variation. The cleaning algorithms were applied to four yield data sets with known integrity issues to demonstrate effectiveness. Approximately 13–20 % of the original yield data were removed, and this resulted in an increased mean yield of 0.13 t/ha (average). The semivariograms of cleaned data were shown to possess smaller nugget values compared with the original data. The opportunity index calculation algorithm was demonstrated on a field with nine seasons of yield data. The results demonstrated that using a ranking of Yi provides a rational, agronomic assessment of the opportunity for SSCM based on the quantity and pattern of production variability displayed in yield data sets. This provides farm managers with a rapid way to assess whether the observed variability deserves further investigation and eventual investment in SSCM operations.

Journal

Precision AgricultureSpringer Journals

Published: Dec 18, 2012

References

  • Remedial correction of yield map data
    Blackmore, BS; Moore, M

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off