An insitu borescopic quantitative imaging profiler for the measurement of high concentration sediment velocity

An insitu borescopic quantitative imaging profiler for the measurement of high concentration... The design, calibration, and testing of a borescopic quantitative imaging profiler (BQuIP) system, suitable for the insitu measurement of two components of the instantaneous velocity in high sediment concentration flows, are presented. Unlike planar quantitative imaging techniques, BQuIP has a concentration-dependent field of view, requiring detailed calibration. BQuIP is demonstrated in unidirectional sheet flow in an open channel flume with a narrow-graded sand with median diameter 0.25 mm. Acoustic velocity measurements are made in the suspension region above the BQuIP measured region yielding a continuous measurement of velocity and turbulent stress from the immobile bed to just below the free surface. The temporal history at a point reveals the sheet flow sediment velocities to be highly intermittent, and the spectra reveal a broad range of temporal scales close to −5/3 in slope for the streamwise velocity component. At its core BQuIP is a quantitative imaging technique giving it significant flexibility in terms of both the spatial and temporal analysis parameters (e.g., interrogation subwindow size and Δt, the time between images in a pair to be analyzed), allowing it to have tremendous dynamic range in terms of the velocities that can be measured. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

An insitu borescopic quantitative imaging profiler for the measurement of high concentration sediment velocity

Loading next page...
 
/lp/springer_journal/an-insitu-borescopic-quantitative-imaging-profiler-for-the-measurement-ZfejFM20nW
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by The Author(s)
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0801-8
Publisher site
See Article on Publisher Site

Abstract

The design, calibration, and testing of a borescopic quantitative imaging profiler (BQuIP) system, suitable for the insitu measurement of two components of the instantaneous velocity in high sediment concentration flows, are presented. Unlike planar quantitative imaging techniques, BQuIP has a concentration-dependent field of view, requiring detailed calibration. BQuIP is demonstrated in unidirectional sheet flow in an open channel flume with a narrow-graded sand with median diameter 0.25 mm. Acoustic velocity measurements are made in the suspension region above the BQuIP measured region yielding a continuous measurement of velocity and turbulent stress from the immobile bed to just below the free surface. The temporal history at a point reveals the sheet flow sediment velocities to be highly intermittent, and the spectra reveal a broad range of temporal scales close to −5/3 in slope for the streamwise velocity component. At its core BQuIP is a quantitative imaging technique giving it significant flexibility in terms of both the spatial and temporal analysis parameters (e.g., interrogation subwindow size and Δt, the time between images in a pair to be analyzed), allowing it to have tremendous dynamic range in terms of the velocities that can be measured.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 30, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off