Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose: Pancreatic cancer is still associated with a poor outcome and low patient quality of life, which are mainly attributed to the late detection and requirement of distal pancreatectomy with extended resection of pancreatic tumors. Therefore, novel strategies for early screening and precise tumor resection are urgently needed. In this study, we evaluated the feasibility of a low- density lipoprotein receptor (LDLR)-targeted small-molecule contrast agent (peptide-22-Cy7) for early screening with photoacoustic tomography and near-infrared (NIR) imaging as guided surgical navigation to achieve precise resection. Procedure: Normal pancreatic cells (HPDE6-C7) and cancer cells (PANC-1) were respectively used in the in vitro targeting evaluations. The ability of peptide-22-Cy7 for preoperative in vivo pancreatic tumor detection was investigated in a mouse orthotopic pancreatic cancer model (n = 10) using photoacoustic tomography; 18 tumor-bearing mice were further divided into three groups for different treatments. After intravenous injection of peptide-22-Cy7, surgical navigation was conducted through laparotomy. Histopathological analysis was used to further confirm the tumor area and the state of surgical margins. Results: Flow cytometry demonstrated that peptide-22 is highly specific to pancreatic cancer cells, with a fluorescence intensity of approximately 87.3 %. Orthotopic pancreatic tumors with a size of 4 mm could be
Molecular Imaging and Biology – Springer Journals
Published: Jun 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.