An infinite sequence of localized semiclassical bound states for nonlinear Dirac equations

An infinite sequence of localized semiclassical bound states for nonlinear Dirac equations In this paper, we study the following nonlinear Dirac equation $$\begin{aligned} -i\varepsilon \alpha \cdot \nabla u+a\beta u+V(x)u=|u|^{p-2}u,\ x\in \mathbb {R}^3, \ \mathrm{for}\ u\in H^1({{\mathbb {R}}}^3, {{\mathbb {C}}}^4), \end{aligned}$$ - i ε α · ∇ u + a β u + V ( x ) u = | u | p - 2 u , x ∈ R 3 , for u ∈ H 1 ( R 3 , C 4 ) , where $$p\in (2,3)$$ p ∈ ( 2 , 3 ) , $$a > 0$$ a > 0 is a constant, $$\alpha =(\alpha _1,\alpha _2,\alpha _3)$$ α = ( α 1 , α 2 , α 3 ) , $$\alpha _1,\alpha _2,\alpha _3$$ α 1 , α 2 , α 3 and $$\beta $$ β are $$4\times 4$$ 4 × 4 Pauli–Dirac matrices. Under only a local condition that V has a local trapping potential well, when $$\varepsilon >0$$ ε > 0 is sufficiently small, we construct an infinite sequence of localized bound state solutions concentrating around the local minimum points of V. These solutions are of higher topological type in the sense that they are obtained from a minimax characterization of higher dimensional symmetric linking structure. The existing work in the literature give finitely many such localized solutions depending on both the local behavior of the potential function V near the local minimum points of V and the global behavior of V at infinity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Calculus of Variations and Partial Differential Equations Springer Journals

An infinite sequence of localized semiclassical bound states for nonlinear Dirac equations

Loading next page...
 
/lp/springer_journal/an-infinite-sequence-of-localized-semiclassical-bound-states-for-6PDkED4uWz
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Mathematics; Analysis; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization; Theoretical, Mathematical and Computational Physics
ISSN
0944-2669
eISSN
1432-0835
D.O.I.
10.1007/s00526-018-1319-9
Publisher site
See Article on Publisher Site

Abstract

In this paper, we study the following nonlinear Dirac equation $$\begin{aligned} -i\varepsilon \alpha \cdot \nabla u+a\beta u+V(x)u=|u|^{p-2}u,\ x\in \mathbb {R}^3, \ \mathrm{for}\ u\in H^1({{\mathbb {R}}}^3, {{\mathbb {C}}}^4), \end{aligned}$$ - i ε α · ∇ u + a β u + V ( x ) u = | u | p - 2 u , x ∈ R 3 , for u ∈ H 1 ( R 3 , C 4 ) , where $$p\in (2,3)$$ p ∈ ( 2 , 3 ) , $$a > 0$$ a > 0 is a constant, $$\alpha =(\alpha _1,\alpha _2,\alpha _3)$$ α = ( α 1 , α 2 , α 3 ) , $$\alpha _1,\alpha _2,\alpha _3$$ α 1 , α 2 , α 3 and $$\beta $$ β are $$4\times 4$$ 4 × 4 Pauli–Dirac matrices. Under only a local condition that V has a local trapping potential well, when $$\varepsilon >0$$ ε > 0 is sufficiently small, we construct an infinite sequence of localized bound state solutions concentrating around the local minimum points of V. These solutions are of higher topological type in the sense that they are obtained from a minimax characterization of higher dimensional symmetric linking structure. The existing work in the literature give finitely many such localized solutions depending on both the local behavior of the potential function V near the local minimum points of V and the global behavior of V at infinity.

Journal

Calculus of Variations and Partial Differential EquationsSpringer Journals

Published: Mar 12, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off