An inclined rectangular jet in a turbulent boundary layer-vortex flow

An inclined rectangular jet in a turbulent boundary layer-vortex flow A model test study was performed on streamwise vortices generated by a rectangular jet in an otherwise flat-plate turbulent boundary layer. The study was conducted in a low speed wind tunnel. The rectangular jet had a cross-section size of 28 mm by 5.5 mm. The oncoming boundary layer had a 99.5 percent thickness of 25 mm. The freestream speed of the oncoming flow was 20 m/s. Measurements were performed with a three-element LDA system. The effects of skew angle and streamwise development of vortex were investigated and the mean flow properties are presented. The study showed that the rectangular jet was able to produce a streamwise vortex of higher strength than that of a round jet, while at the same time keeping the same size and shape as that of a round jet. A 63% increase in the maximum vorticity was found. The 45∘ skew angle was identified as the optimal skew angle for vortex production. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

An inclined rectangular jet in a turbulent boundary layer-vortex flow

Loading next page...
 
/lp/springer_journal/an-inclined-rectangular-jet-in-a-turbulent-boundary-layer-vortex-flow-zN0R5g3OGw
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050393
Publisher site
See Article on Publisher Site

Abstract

A model test study was performed on streamwise vortices generated by a rectangular jet in an otherwise flat-plate turbulent boundary layer. The study was conducted in a low speed wind tunnel. The rectangular jet had a cross-section size of 28 mm by 5.5 mm. The oncoming boundary layer had a 99.5 percent thickness of 25 mm. The freestream speed of the oncoming flow was 20 m/s. Measurements were performed with a three-element LDA system. The effects of skew angle and streamwise development of vortex were investigated and the mean flow properties are presented. The study showed that the rectangular jet was able to produce a streamwise vortex of higher strength than that of a round jet, while at the same time keeping the same size and shape as that of a round jet. A 63% increase in the maximum vorticity was found. The 45∘ skew angle was identified as the optimal skew angle for vortex production.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 3, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off