An Improved Vulnerability Assessment Model for Floor Water Bursting from a Confined Aquifer Based on the Water Inrush Coefficient Method

An Improved Vulnerability Assessment Model for Floor Water Bursting from a Confined Aquifer Based... Pressurized confined water below coal seams are serious threats to mining. The conventional water inrush coefficient method fails to accurately assess the risk of floor water inrush under some specific conditions, such as high water pressure and low water yield in the source aquifers. Large amounts of water inrush data including water inrush flow rate, water inrush coefficient (T s ), floor aquiclude thickness (M), and water abundance, were collected and statistically analyzed. The results indicated that inrushes mostly occurred when M was less than 30 m and that the critical T s increased linearly with M. The occurrence of a water inrush and water inrush yield amount (Q in L/s) were related to both the values of T s and the unit water inflow (q in L/(s m)). In addition, 97.7% of the large- and medium-sized inrush events occurred when q > 2 L/(s m) and only a small proportion (3.2%) of the small-sized inrushes happened when q < 0.1 L (s m). T s , M and q were comprehensively analyzed and used to evaluate vulnerability to floor water inrush. By analyzing the distribution of water inrush points and the scale of water inrush events, the vulnerability was divided into four levels (safe, moderately safe, potentially dangerous, and highly risky) based on T s –M and T s –q models. Successful application of these models in the Huaibei mining area proved that they are feasible in practice. The T s –M and T s –q charts can be used independently or jointly. These new methods should improve the accuracy of predictions and evaluations during deep exploitation where the aquifers are often characterized with high pressure but low water abundance. The results could also help reduce the amount spent on mine water prevention and control. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mine Water and the Environment Springer Journals

An Improved Vulnerability Assessment Model for Floor Water Bursting from a Confined Aquifer Based on the Water Inrush Coefficient Method

Loading next page...
 
/lp/springer_journal/an-improved-vulnerability-assessment-model-for-floor-water-bursting-FrcjWiql7l
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geology; Water Quality/Water Pollution; Hydrogeology; Mineral Resources; Ecotoxicology; Industrial Pollution Prevention
ISSN
1025-9112
eISSN
1616-1068
D.O.I.
10.1007/s10230-017-0463-3
Publisher site
See Article on Publisher Site

Abstract

Pressurized confined water below coal seams are serious threats to mining. The conventional water inrush coefficient method fails to accurately assess the risk of floor water inrush under some specific conditions, such as high water pressure and low water yield in the source aquifers. Large amounts of water inrush data including water inrush flow rate, water inrush coefficient (T s ), floor aquiclude thickness (M), and water abundance, were collected and statistically analyzed. The results indicated that inrushes mostly occurred when M was less than 30 m and that the critical T s increased linearly with M. The occurrence of a water inrush and water inrush yield amount (Q in L/s) were related to both the values of T s and the unit water inflow (q in L/(s m)). In addition, 97.7% of the large- and medium-sized inrush events occurred when q > 2 L/(s m) and only a small proportion (3.2%) of the small-sized inrushes happened when q < 0.1 L (s m). T s , M and q were comprehensively analyzed and used to evaluate vulnerability to floor water inrush. By analyzing the distribution of water inrush points and the scale of water inrush events, the vulnerability was divided into four levels (safe, moderately safe, potentially dangerous, and highly risky) based on T s –M and T s –q models. Successful application of these models in the Huaibei mining area proved that they are feasible in practice. The T s –M and T s –q charts can be used independently or jointly. These new methods should improve the accuracy of predictions and evaluations during deep exploitation where the aquifers are often characterized with high pressure but low water abundance. The results could also help reduce the amount spent on mine water prevention and control.

Journal

Mine Water and the EnvironmentSpringer Journals

Published: Jun 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off