An improved formalism for quantum computation based on geometric algebra—case study: Grover’s search algorithm

An improved formalism for quantum computation based on geometric algebra—case study: Grover’s... The Grover search algorithm is one of the two key algorithms in the field of quantum computing, and hence it is desirable to represent it in the simplest and most intuitive formalism possible. We show firstly, that Clifford’s geometric algebra, provides a significantly simpler representation than the conventional bra-ket notation, and secondly, that the basis defined by the states of maximum and minimum weight in the Grover search space, allows a simple visualization of the Grover search analogous to the precession of a spin- $${\frac{1}{2}}$$ particle. Using this formalism we efficiently solve the exact search problem, as well as easily representing more general search situations. We do not claim the development of an improved algorithm, but show in a tutorial paper that geometric algebra provides extremely compact and elegant expressions with improved clarity for the Grover search algorithm. Being a key algorithm in quantum computing and one of the most studied, it forms an ideal basis for a tutorial on how to elucidate quantum operations in terms of geometric algebra—this is then of interest in extending the applicability of geometric algebra to more complicated problems in fields of quantum computing, quantum decision theory, and quantum information. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

An improved formalism for quantum computation based on geometric algebra—case study: Grover’s search algorithm

Loading next page...
 
/lp/springer_journal/an-improved-formalism-for-quantum-computation-based-on-geometric-5VJ0CTSGRK
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0483-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial