An improved algorithm for dispatching the minimum number of electric charging vehicles for wireless sensor networks

An improved algorithm for dispatching the minimum number of electric charging vehicles for... The very limited sensor battery energy greatly hinders the large-scale, long-term deployments of wireless sensor networks. This paper studies the problem of scheduling the minimum charging vehicles to charge lifetime-critical sensors in a wireless rechargeable sensor network, by utilizing the breakthrough wireless charging technology. Existing studies still employ a number of charging vehicles to charge sensors. The purchase cost of a charging vehicle however is not inexpensive. To further reduce the number of employed charging vehicles, we propose a novel approximation algorithm, by exploring the combinatorial properties of the problem. The techniques exploited in this paper are essentially different from that in existing studies. Not only do we show that the approximation ratio of the proposed algorithm is much better than that of the state-of-the-art, but also extensive experimental results demonstrate that the number of scheduled charging vehicles by the proposed algorithm is at least 10% less than that by the existing algorithms and the total travel energy consumption of the charging vehicles is also smaller than that by the existing algorithms. Keywords Wireless sensor networks  Wireless energy transfer  Minimum number of dispatched charging vehicles Approximation algorithm 1 Introduction Wireless sensor networks (WSNs) are widely used in http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Networks Springer Journals

An improved algorithm for dispatching the minimum number of electric charging vehicles for wireless sensor networks

Loading next page...
 
/lp/springer_journal/an-improved-algorithm-for-dispatching-the-minimum-number-of-electric-eAhQAgweiU
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Engineering; Communications Engineering, Networks; Computer Communication Networks; Electrical Engineering; IT in Business
ISSN
1022-0038
eISSN
1572-8196
D.O.I.
10.1007/s11276-018-1765-5
Publisher site
See Article on Publisher Site

Abstract

The very limited sensor battery energy greatly hinders the large-scale, long-term deployments of wireless sensor networks. This paper studies the problem of scheduling the minimum charging vehicles to charge lifetime-critical sensors in a wireless rechargeable sensor network, by utilizing the breakthrough wireless charging technology. Existing studies still employ a number of charging vehicles to charge sensors. The purchase cost of a charging vehicle however is not inexpensive. To further reduce the number of employed charging vehicles, we propose a novel approximation algorithm, by exploring the combinatorial properties of the problem. The techniques exploited in this paper are essentially different from that in existing studies. Not only do we show that the approximation ratio of the proposed algorithm is much better than that of the state-of-the-art, but also extensive experimental results demonstrate that the number of scheduled charging vehicles by the proposed algorithm is at least 10% less than that by the existing algorithms and the total travel energy consumption of the charging vehicles is also smaller than that by the existing algorithms. Keywords Wireless sensor networks  Wireless energy transfer  Minimum number of dispatched charging vehicles Approximation algorithm 1 Introduction Wireless sensor networks (WSNs) are widely used in

Journal

Wireless NetworksSpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off