Access the full text.
Sign up today, get DeepDyve free for 14 days.
The very limited sensor battery energy greatly hinders the large-scale, long-term deployments of wireless sensor networks. This paper studies the problem of scheduling the minimum charging vehicles to charge lifetime-critical sensors in a wireless rechargeable sensor network, by utilizing the breakthrough wireless charging technology. Existing studies still employ a number of charging vehicles to charge sensors. The purchase cost of a charging vehicle however is not inexpensive. To further reduce the number of employed charging vehicles, we propose a novel approximation algorithm, by exploring the combinatorial properties of the problem. The techniques exploited in this paper are essentially different from that in existing studies. Not only do we show that the approximation ratio of the proposed algorithm is much better than that of the state-of-the-art, but also extensive experimental results demonstrate that the number of scheduled charging vehicles by the proposed algorithm is at least 10% less than that by the existing algorithms and the total travel energy consumption of the charging vehicles is also smaller than that by the existing algorithms.
Wireless Networks – Springer Journals
Published: May 29, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.