An implicit model for multi-activity shift scheduling problems

An implicit model for multi-activity shift scheduling problems We consider a multi-activity shift scheduling problem where the objective is to construct anonymous multi-activity shifts that respect union rules, satisfy the demand and minimize workforce costs. An implicit approach using adapted forward and backward constraints is proposed that integrates both the shift construction and the activity assignment problems. Our computational study shows that using the branch-and-bound procedure of CPLEX 12.6 on the proposed implicit model yields optimal solutions in relatively short times for environments including up to 2970 millions of explicit shifts. Our implicit model is compared to the grammar-based implicit model proposed by Côté et al. (Manag Sci 57(1):151–163, 2011b) on a large set of instances. The results prove that both implicit models have their strengths and weaknesses and are more or less efficient depending on the scheduling environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Scheduling Springer Journals

An implicit model for multi-activity shift scheduling problems

Loading next page...
 
/lp/springer_journal/an-implicit-model-for-multi-activity-shift-scheduling-problems-0ST5aH0TbY
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Business and Management; Operations Research/Decision Theory; Calculus of Variations and Optimal Control; Optimization; Optimization; Artificial Intelligence (incl. Robotics); Supply Chain Management
ISSN
1094-6136
eISSN
1099-1425
D.O.I.
10.1007/s10951-017-0544-y
Publisher site
See Article on Publisher Site

Abstract

We consider a multi-activity shift scheduling problem where the objective is to construct anonymous multi-activity shifts that respect union rules, satisfy the demand and minimize workforce costs. An implicit approach using adapted forward and backward constraints is proposed that integrates both the shift construction and the activity assignment problems. Our computational study shows that using the branch-and-bound procedure of CPLEX 12.6 on the proposed implicit model yields optimal solutions in relatively short times for environments including up to 2970 millions of explicit shifts. Our implicit model is compared to the grammar-based implicit model proposed by Côté et al. (Manag Sci 57(1):151–163, 2011b) on a large set of instances. The results prove that both implicit models have their strengths and weaknesses and are more or less efficient depending on the scheduling environment.

Journal

Journal of SchedulingSpringer Journals

Published: Oct 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off