An Extremal Eigenvalue Problem for a Two-Phase Conductor in a Ball

An Extremal Eigenvalue Problem for a Two-Phase Conductor in a Ball The pioneering works of Murat and Tartar (Topics in the mathematical modeling of composite materials. PNLDE 31. Birkhäuser, Basel, 1997 ) go a long way in showing, in general, that problems of optimal design may not admit solutions if microstructural designs are excluded from consideration. Therefore, assuming, tactilely, that the problem of minimizing the first eigenvalue of a two-phase conducting material with the conducting phases to be distributed in a fixed proportion in a given domain has no true solution in general domains, Cox and Lipton only study conditions for an optimal microstructural design (Cox and Lipton in Arch. Ration. Mech. Anal. 136:101–117, 1996 ). Although, the problem in one dimension has a solution (cf. Kreĭn in AMS Transl. Ser. 2(1):163–187, 1955 ) and, in higher dimensions, the problem set in a ball can be deduced to have a radially symmetric solution (cf. Alvino et al. in Nonlinear Anal. TMA 13(2):185–220, 1989 ), these existence results have been regarded so far as being exceptional owing to complete symmetry. It is still not clear why the same problem in domains with partial symmetry should fail to have a solution which does not develop microstructure and respecting the symmetry of the domain. We hope to revive interest in this question by giving a new proof of the result in a ball using a simpler symmetrization result from Alvino and Trombetti (J. Math. Anal. Appl. 94:328–337, 1983 ). Applied Mathematics and Optimization Springer Journals

An Extremal Eigenvalue Problem for a Two-Phase Conductor in a Ball

Loading next page...
Copyright © 2009 by Springer Science+Business Media, LLC
Mathematics; Numerical and Computational Methods ; Mathematical Methods in Physics; Mathematical and Computational Physics; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial