An exploratory study of Twitter messages about software applications

An exploratory study of Twitter messages about software applications Users of the Twitter microblogging platform share a considerable amount of information through short messages on a daily basis. Some of these so-called tweets discuss issues related to software and could include information that is relevant to the companies developing these applications. Such tweets have the potential to help requirements engineers better understand user needs and therefore provide important information for software evolution. However, little is known about the nature of tweets discussing software-related issues. In this paper, we report on the usage characteristics, content and automatic classification potential of tweets about software applications. Our results are based on an exploratory study in which we used descriptive statistics, content analysis, machine learning and lexical sentiment analysis to explore a dataset of 10,986,495 tweets about 30 different software applications. Our results show that searching for relevant information on software applications within the vast stream of tweets can be compared to looking for a needle in a haystack. However, this relevant information can provide valuable input for software companies and support the continuous evolution of the applications discussed in these tweets. Furthermore, our results show that it is possible to use machine learning and lexical sentiment analysis techniques to automatically extract information about the tweets regarding their relevance, authors and sentiment polarity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Requirements Engineering Springer Journals

An exploratory study of Twitter messages about software applications

Loading next page...
 
/lp/springer_journal/an-exploratory-study-of-twitter-messages-about-software-applications-u48wlK1cuK
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Computer Science; Software Engineering
ISSN
0947-3602
eISSN
1432-010X
D.O.I.
10.1007/s00766-017-0274-x
Publisher site
See Article on Publisher Site

Abstract

Users of the Twitter microblogging platform share a considerable amount of information through short messages on a daily basis. Some of these so-called tweets discuss issues related to software and could include information that is relevant to the companies developing these applications. Such tweets have the potential to help requirements engineers better understand user needs and therefore provide important information for software evolution. However, little is known about the nature of tweets discussing software-related issues. In this paper, we report on the usage characteristics, content and automatic classification potential of tweets about software applications. Our results are based on an exploratory study in which we used descriptive statistics, content analysis, machine learning and lexical sentiment analysis to explore a dataset of 10,986,495 tweets about 30 different software applications. Our results show that searching for relevant information on software applications within the vast stream of tweets can be compared to looking for a needle in a haystack. However, this relevant information can provide valuable input for software companies and support the continuous evolution of the applications discussed in these tweets. Furthermore, our results show that it is possible to use machine learning and lexical sentiment analysis techniques to automatically extract information about the tweets regarding their relevance, authors and sentiment polarity.

Journal

Requirements EngineeringSpringer Journals

Published: Jul 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off