An experimental switching-aware GMPLS-based lightpath provisioning protocol in wavelength-routed networks

An experimental switching-aware GMPLS-based lightpath provisioning protocol in wavelength-routed... In wavelength-routed optical networks, the high-delay introduced by the optical switching fabric for resource reservation increases critically the lightpath setup delay. In order to minimize the setup delay, Generalized Multi-protocol Label Switching (GMPLS) introduced the concept of Suggested Label Object (SL), which allows to start reserving and configuring the hardware with a proposed wavelength from the source node to the destination node. This solution is not optimal in wavelength selective networks (WSN) (i.e., without wavelengths converters). The need of guaranteeing the wavelength continuity constraint for end-to-end optical connections, combined with the lack of global wavelength-based link information (the source node is not aware of which wavelengths are available on each link), makes that the likelihood of establishing a lightpath using the proposed suggested label may be minimum. In this article, we propose an enhancement to the current GMPLS RSVP-TE signaling protocol with offset time-based provisioning that minimizes the lightpath setup, improving the overall network performance in terms of blocking probability and setup delay. Experimental performance evaluation has been carried out in ADRENALINE testbed, a GMPLS-based intelligent all-optical transport network. Photonic Network Communications Springer Journals

An experimental switching-aware GMPLS-based lightpath provisioning protocol in wavelength-routed networks

Loading next page...
Springer US
Copyright © 2007 by Springer Science+Business Media, LLC
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


  • An efficient distributed control scheme for lightpath establishment in dynamic wdm networks
    Feng, F.; Zheng, X.; Zhang, H.; Guo; Y.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial