An experimental investigation on the surface water transport process over an airfoil by using a digital image projection technique

An experimental investigation on the surface water transport process over an airfoil by using a... In the present study, an experimental investigation was conducted to characterize the transient behavior of the surface water film and rivulet flows driven by boundary layer airflows over a NACA0012 airfoil in order to elucidate underlying physics of the important micro-physical processes pertinent to aircraft icing phenomena. A digital image projection (DIP) technique was developed to quantitatively measure the film thickness distribution of the surface water film/rivulet flows over the airfoil at different test conditions. The time-resolved DIP measurements reveal that micro-sized water droplets carried by the oncoming airflow impinged onto the airfoil surface, mainly in the region near the airfoil leading edge. After impingement, the water droplets formed thin water film that runs back over the airfoil surface, driven by the boundary layer airflow. As the water film advanced downstream, the contact line was found to bugle locally and developed into isolated water rivulets further downstream. The front lobes of the rivulets quickly advanced along the airfoil and then shed from the airfoil trailing edge, resulting in isolated water transport channels over the airfoil surface. The water channels were responsible for transporting the water mass impinging at the airfoil leading edge. Additionally, the transition location of the surface water transport process from film flows to rivulet flows was found to occur further upstream with increasing velocity of the oncoming airflow. The thickness of the water film/rivulet flows was found to increase monotonically with the increasing distance away from the airfoil leading edge. The runback velocity of the water rivulets was found to increase rapidly with the increasing airflow velocity, while the rivulet width and the gap between the neighboring rivulets decreased as the airflow velocity increased. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

An experimental investigation on the surface water transport process over an airfoil by using a digital image projection technique

Loading next page...
 
/lp/springer_journal/an-experimental-investigation-on-the-surface-water-transport-process-7Oo6IopGwd
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-2046-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial