An experimental investigation of the response of hot-wire X-probes in shear flows

An experimental investigation of the response of hot-wire X-probes in shear flows The response of hot-wire X-probes in regions of strong velocity gradients (such as in the near wall region of boundary layer flows) is investigated experimentally. Although the wall-normal velocity component should be close to zero near the wall, one usually encounters an increased absolute value of this component when the wall is approached. Moreover some physically inconsistent behaviour in other measured quantities, for instance the Reynolds stresses, may be found. These effects can be due to a physical displacement of the wires (e.g. a wall-normal displacement of the two wires so that they do not cross at their mid-points), but also due to the influence of the probe on the local flow field. The latter might be an effect of blockage or wall interference and can be treated as a virtual displacement. The response equations of an X-probe with different wall-normal displacement of the wires are derived and applied in order to correct the measured data. A systematic experimental investigation of the effect of varying the physical displacement of the wires is also made, and it is shown that both the first and second order correction terms of the probe response equations can be estimated from this experiment. A correction procedure for measurements close to the wall is proposed and used to correct Reynolds stress profiles in a flat plate boundary-layer. It is also shown that the present experimental set-up can be used to estimate some turbulence correlations which otherwise are unaccessible with standard measurement techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

An experimental investigation of the response of hot-wire X-probes in shear flows

Loading next page...
 
/lp/springer_journal/an-experimental-investigation-of-the-response-of-hot-wire-x-probes-in-So68LIT5Ox
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050402
Publisher site
See Article on Publisher Site

Abstract

The response of hot-wire X-probes in regions of strong velocity gradients (such as in the near wall region of boundary layer flows) is investigated experimentally. Although the wall-normal velocity component should be close to zero near the wall, one usually encounters an increased absolute value of this component when the wall is approached. Moreover some physically inconsistent behaviour in other measured quantities, for instance the Reynolds stresses, may be found. These effects can be due to a physical displacement of the wires (e.g. a wall-normal displacement of the two wires so that they do not cross at their mid-points), but also due to the influence of the probe on the local flow field. The latter might be an effect of blockage or wall interference and can be treated as a virtual displacement. The response equations of an X-probe with different wall-normal displacement of the wires are derived and applied in order to correct the measured data. A systematic experimental investigation of the effect of varying the physical displacement of the wires is also made, and it is shown that both the first and second order correction terms of the probe response equations can be estimated from this experiment. A correction procedure for measurements close to the wall is proposed and used to correct Reynolds stress profiles in a flat plate boundary-layer. It is also shown that the present experimental set-up can be used to estimate some turbulence correlations which otherwise are unaccessible with standard measurement techniques.

Journal

Experiments in FluidsSpringer Journals

Published: May 3, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off