An experimental evaluation and analysis of database cracking

An experimental evaluation and analysis of database cracking Database cracking has been an area of active research in recent years. The core idea of database cracking is to create indexes adaptively and incrementally as a side product of query processing. Several works have proposed different cracking techniques for different aspects including updates, tuple reconstruction, convergence, concurrency control, and robustness. Our 2014 VLDB paper “The Uncracked Pieces in Database Cracking” (PVLDB 7:97–108, 2013 /VLDB 2014) was the first comparative study of these different methods by an independent group. In this article, we extend our published experimental study on database cracking and bring it to an up-to-date state. Our goal is to critically review several aspects, identify the potential, and propose promising directions in database cracking. With this study, we hope to expand the scope of database cracking and possibly leverage cracking in database engines other than MonetDB. We repeat several prior database cracking works including the core cracking algorithms as well as three other works on convergence (hybrid cracking), tuple reconstruction (sideways cracking), and robustness (stochastic cracking), respectively. Additionally to our conference paper, we now also look at a recently published study about CPU efficiency (predication cracking). We evaluate these works and show possible directions to do even better. As a further extension, we evaluate the whole class of parallel cracking algorithms that were proposed in three recent works. Altogether, in this work we revisit 8 papers on database cracking and evaluate in total 18 cracking methods, 6 sorting algorithms, and 3 full index structures. Additionally, we test cracking under a variety of experimental settings, including high selectivity ( Low selectivity means that many entries qualify. Consequently, a high selectivity means, that only few entries qualify) queries, low selectivity queries, varying selectivity, and multiple query access patterns. Finally, we compare cracking against different sorting algorithms as well as against different main memory optimized indexes, including the recently proposed adaptive radix tree (ART). Our results show that: (1) the previously proposed cracking algorithms are repeatable, (2) there is still enough room to significantly improve the previously proposed cracking algorithms, (3) parallelizing cracking algorithms efficiently is a hard task, (4) cracking depends heavily on query selectivity, (5) cracking needs to catch up with modern indexing trends, and (6) different indexing algorithms have different indexing signatures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

An experimental evaluation and analysis of database cracking

Loading next page...
 
/lp/springer_journal/an-experimental-evaluation-and-analysis-of-database-cracking-t8rml0FLft
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-015-0397-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial