An evaluation of the contribution of ultraviolet in fused multispectral images for invertebrate detection on green leaves

An evaluation of the contribution of ultraviolet in fused multispectral images for invertebrate... Real-time detection and identification of invertebrates on crops is a useful capability for integrated pest management, however, this challenging task has not been solved. Compared with other technologies, a machine vision system (MVS) could provide a more flexible solution. To date, most studies have focused on counting and identifying specimens in sample containers, glass slides or traps where the illumination and background reflection can be well controlled; few studies have been conducted to detect pests on plants. In the context of invertebrate detection or identification, the spectra of visible light, near infrared (NIR) and soft X-ray have been well studied, while the spectrum of ultraviolet (UV) is still untouched. Many species of bird prey on invertebrate pests and have adaptations in their visual system to enhance detection of targets. These birds can use both UV and visible light to hunt. If the mechanisms of bird vision could be transferred to a technological visual system, it might improve the capability for invertebrate detection. This study provides an initial estimation of the contribution of UV for invertebrate detection on green leaves. By fusing the UV images into the visible light and NIR images, the MVS can detect nine invertebrate species on leaves of plants and the UV images can significantly reduce segmentation errors. The initial experiment was conducted in a laboratory, however, this study shows promise for infield applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

An evaluation of the contribution of ultraviolet in fused multispectral images for invertebrate detection on green leaves

Loading next page...
 
/lp/springer_journal/an-evaluation-of-the-contribution-of-ultraviolet-in-fused-qLIVHXLd7y
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-016-9472-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial