An evaluation of alternative methods used in the estimation of Gaussian term structure models

An evaluation of alternative methods used in the estimation of Gaussian term structure models This paper provides an evaluation of five methods, proposed in the literature, for extracting factors used in the estimation of Gaussian affine term structure models. We assert that irrespective of the method used for extracting state variables, cross-sectional and serial correlations exist in measurement errors. However, using a simulation design which is consistent with the data, we show that parameter estimation using the Kalman filter and the model-free method are quite precise in the presence of serial and cross-sectional correlations in the error term, and, in the presence of different measurement errors, the Kalman filter demonstrates strong empirical tractability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Quantitative Finance and Accounting Springer Journals

An evaluation of alternative methods used in the estimation of Gaussian term structure models

Loading next page...
 
/lp/springer_journal/an-evaluation-of-alternative-methods-used-in-the-estimation-of-4bvmXCh4F2
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Economics / Management Science; Finance/Investment/Banking; Accounting/Auditing; Econometrics; Operations Research/Decision Theory
ISSN
0924-865X
eISSN
1573-7179
D.O.I.
10.1007/s11156-013-0396-2
Publisher site
See Article on Publisher Site

Abstract

This paper provides an evaluation of five methods, proposed in the literature, for extracting factors used in the estimation of Gaussian affine term structure models. We assert that irrespective of the method used for extracting state variables, cross-sectional and serial correlations exist in measurement errors. However, using a simulation design which is consistent with the data, we show that parameter estimation using the Kalman filter and the model-free method are quite precise in the presence of serial and cross-sectional correlations in the error term, and, in the presence of different measurement errors, the Kalman filter demonstrates strong empirical tractability.

Journal

Review of Quantitative Finance and AccountingSpringer Journals

Published: Aug 18, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off