An ensemble of shapelet-based classifiers on inter-class and intra-class imbalanced multivariate time series at the early stage

An ensemble of shapelet-based classifiers on inter-class and intra-class imbalanced multivariate... Early classification of time series will weaken the accuracy to some degree. If the time series data are imbalanced, it will be also challenging to accurately identify minority class examples. Up to now, these two problems have been intensively addressed separately on univariate time series data, but yet to be well studied when they occur together. Compared with univariate time series, multivariate time series (MTS) is more complex, which contains multiple variables, and the interconnections between variables are hidden. Therefore, it is even more challenging to handle the combination of both problems on multivariate time series. In this paper, we propose an adaptive classification ensemble method called early prediction on imbalanced MTS to deal with early classification on inter-class and intra-class imbalanced MTS data simultaneously. First, an adaptive ensemble framework is designed to learn an early classification model on imbalanced MTS data. Based on a multiple under-sampling approach and dynamical subspace generation method, the diversity of base classifiers is realized as well as all majority class examples being fully utilized. Second, to deal with the implicit issue of intra-class imbalance in the training data, a cluster-based shapelet selection method is introduced to obtain an optimal set of stable and http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soft Computing Springer Journals

An ensemble of shapelet-based classifiers on inter-class and intra-class imbalanced multivariate time series at the early stage

Loading next page...
 
/lp/springer_journal/an-ensemble-of-shapelet-based-classifiers-on-inter-class-and-intra-13agem35e4
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Mathematical Logic and Foundations; Control, Robotics, Mechatronics
ISSN
1432-7643
eISSN
1433-7479
D.O.I.
10.1007/s00500-018-3261-3
Publisher site
See Article on Publisher Site

Abstract

Early classification of time series will weaken the accuracy to some degree. If the time series data are imbalanced, it will be also challenging to accurately identify minority class examples. Up to now, these two problems have been intensively addressed separately on univariate time series data, but yet to be well studied when they occur together. Compared with univariate time series, multivariate time series (MTS) is more complex, which contains multiple variables, and the interconnections between variables are hidden. Therefore, it is even more challenging to handle the combination of both problems on multivariate time series. In this paper, we propose an adaptive classification ensemble method called early prediction on imbalanced MTS to deal with early classification on inter-class and intra-class imbalanced MTS data simultaneously. First, an adaptive ensemble framework is designed to learn an early classification model on imbalanced MTS data. Based on a multiple under-sampling approach and dynamical subspace generation method, the diversity of base classifiers is realized as well as all majority class examples being fully utilized. Second, to deal with the implicit issue of intra-class imbalance in the training data, a cluster-based shapelet selection method is introduced to obtain an optimal set of stable and

Journal

Soft ComputingSpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off