An endo-1,4-β-glucanase expressed at high levels in rapidly expanding tissues

An endo-1,4-β-glucanase expressed at high levels in rapidly expanding tissues Plant developmental processes involving modifications to cell wall structure, such as cell expansion, organ abscission and fruit ripening, are accompanied by increased enzyme activity and mRNA abundance of endo-1,4-β-glucanases (EGases). An EGase cDNA clone, Ce14, isolated from tomato (Lycopersicon esculentum) has been shown to be identical to a tomato pistil-predominant EGase cDNA, TPP18. In addition to its previously reported expression during certain stages of early pistil development, Ce14 mRNA was also detected at high levels in the growing zones of etiolated hypocotyls (about 2.5-fold less than in pistils) and in young expanding leaves (about 3.5-fold less than in pistils). The abundance of Ce14 mRNA declined precipitously in older tissues as cells became fully expanded, and was barely detectable in mature vegetative tissues. Ce14 mRNA abundance was also low in abscission zones, and did not increase as abscission progressed. In fruit, Ce14 mRNA was present at low levels during fruit expansion, but was essentially absent during subsequent fruit development and ripening. Treatment of etiolated hypocotyls with ethylene or high concentrations of auxin sufficient to induce rapid lateral cell expansion and hypocotyl swelling also brought about an approximate doubling of Ce14 mRNA abundance, suggesting that Ce14 mRNA accumulation may be promoted directly or indirectly by ethylene. Thus, accumulation of Ce14 mRNA was found to be correlated with rapid cell expansion in pistils, hypocotyls and leaves. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

An endo-1,4-β-glucanase expressed at high levels in rapidly expanding tissues

Loading next page...
 
/lp/springer_journal/an-endo-1-4-glucanase-expressed-at-high-levels-in-rapidly-expanding-ZMgvdQQ1xb
Publisher
Springer Journals
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005733213856
Publisher site
See Article on Publisher Site

Abstract

Plant developmental processes involving modifications to cell wall structure, such as cell expansion, organ abscission and fruit ripening, are accompanied by increased enzyme activity and mRNA abundance of endo-1,4-β-glucanases (EGases). An EGase cDNA clone, Ce14, isolated from tomato (Lycopersicon esculentum) has been shown to be identical to a tomato pistil-predominant EGase cDNA, TPP18. In addition to its previously reported expression during certain stages of early pistil development, Ce14 mRNA was also detected at high levels in the growing zones of etiolated hypocotyls (about 2.5-fold less than in pistils) and in young expanding leaves (about 3.5-fold less than in pistils). The abundance of Ce14 mRNA declined precipitously in older tissues as cells became fully expanded, and was barely detectable in mature vegetative tissues. Ce14 mRNA abundance was also low in abscission zones, and did not increase as abscission progressed. In fruit, Ce14 mRNA was present at low levels during fruit expansion, but was essentially absent during subsequent fruit development and ripening. Treatment of etiolated hypocotyls with ethylene or high concentrations of auxin sufficient to induce rapid lateral cell expansion and hypocotyl swelling also brought about an approximate doubling of Ce14 mRNA abundance, suggesting that Ce14 mRNA accumulation may be promoted directly or indirectly by ethylene. Thus, accumulation of Ce14 mRNA was found to be correlated with rapid cell expansion in pistils, hypocotyls and leaves.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off